MINOS Layout

Two-detector oscillation experiment to start in 2003

Near detector 980 T at 1 km

Far detector 5400 T at 730 km

Gary Feldman
SLAC Summer Institute
14 - 25 August 2000
MINOS Far Detector

- 8m octagonal tracking calorimeter
- 486 layers of 1 in iron plates
- 4.1 cm-wide scintillator strips with WLS fiber readout, read out from both ends
- 8 fibers summed on each PMT pixel
- 25,800 m² (6.4 acres) of active detector planes
- Toroidal magnetic field \(<B> = 1.3\) T
- Total mass 5.4 kT

Half of MINOS far detector
MINOS Near Detector

- 280 “squashed octagon” plates
- Same plate thickness, scintillator thickness and width as far detector
- Target/calorimeter section: 120 planes
  - 4/5 partial area instrumented
  - 1/5 full area instrumented
- Muon spectrometer section: 160 planes
  - 4/5 uninstrumented
  - 1/5 full area instrumented

980 tons
### MINOS Near-Far Detector Differences

<table>
<thead>
<tr>
<th>Rates</th>
<th>Near</th>
<th>Far</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8 μs spill)</td>
<td>~ 3 MHz</td>
<td>~ 30 Hz</td>
<td>• Simulations ⇒ not a problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Low intensity runs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electronics</th>
<th>Deadtime-less 19 ns digitizations</th>
<th>Sample and hold</th>
<th>• Calibrate in test beam</th>
</tr>
</thead>
</table>

| Readout        | Single ended w/ reflector         | Double ended    | • Similar light levels   |
|----------------|-----------------------------------|-----------------|• Calibrate in test beam |

<table>
<thead>
<tr>
<th>Multiplexing</th>
<th>None</th>
<th>8-fold</th>
<th>• Simulations ⇒ not a problem</th>
</tr>
</thead>
</table>

Gary Feldman       SLAC Summer Institute       14 - 25 August 2000       92
MINOS Energy Options

Different beam energies correspond to different horn currents and positions

Will start with low E beam for best sensitivity to match SK results
● Want near and far energy spectra to be identical.
● This is impossible without focusing in the decay pipe:

The solution is the hadronic hose — a wire carrying 1 kA down the center of the beam pipe:
MINOS: Advantages of the Hadronic Hose

- Better near-far agreement
- More events

Near-Far Comparison: $\nu_\mu$

CC Events/kt-year

Relative neutrino event rate

Gary Feldman SLAC Summer Institute 14 - 25 August 2000
MINOS Physics Goals

- Verify dominant $\nu_\mu \rightarrow \nu_\tau$ oscillations
  - $\tau$ appearance is not necessary.
  - $\nu_\mu$ CC disappearance with no NC disappearance and no $\nu_e$ CC appearance $\Rightarrow \nu_\mu \rightarrow \nu_\tau$ oscillations. There is no other possibility.

- Precise measurement of dominant $\Delta m^2$ and $\sin^2(2\theta)$.

- Search for subdominant $\nu_\mu \rightarrow \nu_e$ and $\nu_\mu \rightarrow \nu_s$ oscillations.

- Study unconventional explanations: neutrino decay, extra dimensions, etc.
MINOS Physics Tools

- $\nu_\mu$ CC spectrum
  - Information from both rates and shape. The latter is independent of the near / far normalization.

- NC / CC ratio
  - Independent of the near / far normalization.

- $\nu_e$ CC appearance
  - Use topological criteria: fraction of energy in first few radiation lengths, shower asymmetry, etc.
MINOS CC Spectra

Low-energy beam
2 year run

Charge current spectra
for $\sin^2(2\theta) = 1$

Open = no oscillation
Shaded = oscillation
MINOS Sensitivity

CC E spectrum
1σ contours
2 year run
MINOS $\nu_\tau$ vs. $\nu_s$ Discrimination

Sterile neutrino discrimination by NC/CC ratio
MINOS $\nu_\mu \rightarrow \nu_e$ Sensitivity

90% c.l. $\nu_\mu \rightarrow \nu_e$ sensitivity

Preliminary graph — improved calculations being done.

Electron identification by topological criteria

N.B. Graph is incorrect (or at least misleading) for two reasons — see next slide
Need to use 3-neutrino mixing

Assume that MINOS is only sensitive to the mass scale. Then

\[ P(\nu_\mu \to \nu_e) = \sin^2(\theta_{23}) \sin^2(2\theta_{13}) \sin^2(1.27 \Delta m^2 L/E). \]

\[ \theta_{23} \approx \pi/4 \] and MINOS loses a factor of 2 in sensitivity compared to CHOOZ

\[ \begin{array}{c}
\Delta m^2_{13} \\
\Delta m^2_{23} \\
\Delta m^2_{12}
\end{array} \]

atmospheric
solar
MINOS: $\nu_\mu \rightarrow \nu_e$ Subtleties

- Matter effects are not negligible
  - Matter effects in the earth increase (or decrease) $\nu_\mu \rightarrow \nu_e$ oscillations by about 25% and increase (or decrease) the oscillation length slightly.

- If MINOS can see $\nu_\mu \rightarrow \nu_e$ oscillations, then it can measure the sign of $\Delta m^2$ by measuring $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations, where the sign of the matter effect reverses.
CERN Neutrino Beam to Gran Sasso (CNGS)
## CNGS / NuMI Comparison

<table>
<thead>
<tr>
<th></th>
<th>NuMI</th>
<th>CNGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p$ Energy (GeV)</td>
<td>120</td>
<td>400</td>
</tr>
<tr>
<td>$pot / yr \times 10^{19}$</td>
<td>27</td>
<td>4.5</td>
</tr>
<tr>
<td>$\nu_\mu$ CC events / kT / yr (no oscillations)</td>
<td>3200 (High E)</td>
<td>2450</td>
</tr>
<tr>
<td>Baseline (km)</td>
<td>730</td>
<td>730</td>
</tr>
<tr>
<td>Turn on</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>Near detector(s)</td>
<td>Yes</td>
<td>No*</td>
</tr>
</tbody>
</table>

*Bad choice
CNGS: Why No Near Detectors?

- CERN says that the purpose of CNGS is to do appearance experiments, particularly $\nu_\tau$ appearance, and for these experiments near detectors are not necessary.

- The argument is weak:
  - Granting the argument for $\nu_\tau$ appearance, observing direct $\nu_\tau$ appearance in 2005 will not be interesting. The rates are low (at $\Delta m^2 = 3 \times 10^{-3}$ eV$^2$, 22 events / kT-yr, before efficiency corrections), so precise measurements cannot be done.
  - Two detectors are always better than one, since they allow for a good control of systematic errors and provide discovery potential.
OPERA is a proposal for direct detection of $\nu_\tau$ using the ECC (emulsion cloud chamber) technique:
Emulsions are in bricks. A brick with an event is identified by electronic detectors and removed for measurement.
OPERA Detector

Active mass 2 kT

τ detection efficiency 8.7%

⇒ 18 events in 5 years for $\Delta m^2 = 3.2 \times 10^{-3}$ eV$^2$
ICANOE Proposal

- ICANOE is a marriage of the ICARUS and NOE proposals
- 4 modules, each with a 1.4 kT LAr TPC and a 0.8 kT solid calorimeter \( \Rightarrow \) 9 kT total
ICANOE: Liquid Argon Detector

- Huge LAr TPCs have bubble-chamber like imaging capabilities, excellent fully-active calorimetry, and excellent particle identification from $dE/dx$ and imaging.

A real quasi-elastic event from a 50 liter test chamber in the CERN $\nu$ beam
ICANOE: Solid Detector

- The solid detectors consist of 5 mm magnetized iron plates sandwiched with scintillating fibers and drift tubes.
- They serve as tail-catchers and crosschecks for the LAr and a magnetic spectrometer.
ICANOE: $\nu_\tau$ Appearance

- ICANOE will detect $\nu_\tau$ appearance by observing low-energy excess electrons from the $\tau \rightarrow e\nu\nu$ decay.

- In 4 years, at $\Delta m^2 = 3 \times 10^{-3}$ eV$^2$, there will be about 90 such events in the ICANOE LAr (100% detection efficiency).

- Analyses can also be done with kinematic cuts for low $\nu_e$ background.
ICANOE: $\nu_\mu \rightarrow \nu_e$ Oscillations

- ICANOE’s superb electron identification capabilities allows for a sensitive measurement of $\theta_{13}$.
- However, it will be limited by systematic errors from the lack of a near detector and, probably, the wrong beam tune.
The Future: A Neutrino Factory?

- A simple idea: Store muons in a ring with long straight sections and observe neutrinos from the muon decays.
- Design can be race-track, triangle, or bow tie. Straight sections need to point down to serve two experiments ⇒ arcs need to point up.
Neutrino Factory Basics

- Like the KARMEN experiment: if $\mu^+$ stored, then $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$.

- Normal CC give only $\mu^+$ and $e^-$.
  - $\bar{\nu}_\mu \to \bar{\nu}_e$ oscillations give $e^+$.
  - $\nu_e \to \nu_\mu$ oscillations give $\mu^-$.

- Need magnetic detection to see wrong-sign leptons and very massive detectors for rate.

- Electron charge difficult $\Rightarrow$ emphasis on wrong-sign muon detection.
Neutrino Factory Advantages

- Beam background free.
- Well-known fluxes from monochromatic parents.
- Narrow band beam.
  - An advantage?
- Flux increases as $E_\mu^3$:
  - $E^2$ for divergence.
  - $E$ for the cross section.
  - Is highest possible $E$ always best?
No neutrino Factory Parameters
and Physics Goals

- Parameters under discussion:
  - $20 \leq E_\mu \leq 50$ GeV
    - Lower bound from $p_\mu > 4$ GeV for detection
    - Higher $E_\mu$ is better
  - $10^{19}$ to $10^{21}$ decays per year
  - Baseline about 3000 km
    - Reason to be discussed

- Physics goals:
  - Precise measurement of $\theta_{13}$
  - Determination of the sign of $\Delta m_{23}^2$
  - Measurement of CP violation in lepton sector ($\delta$)
Measurement of $\theta_{13}$ and Sign of $\Delta m_{13}^2$

- If $\theta_{13} \gg \sin(2\theta_{12}) \Delta m_{12}^2 L/E$ (true for SMA, low, and vacuum solar solutions), the situation is simple:

$$P(\nu_\mu \rightarrow \nu_e) = \sin^2(\theta_{23}) \sin^2(2\theta_{13}) \sin^2(1.27 \Delta m_{13}^2 L/E),$$

enhanced or reduced by matter effects, as discussed for MINOS.
Measurement of $\theta_{13}$ and Sign of $\Delta m_{13}^2$

$\sin^2(2\theta_{13})$ reach for $10^{19}$ decays
(from Barger et al., hep-ph/0003184 v2)
Measurement of $\theta_{13}$ and Sign of $\Delta m_{13}^2$

- Sensitivity to $\sin^2 \theta_{13}$ at 90% c.l. from Cervera, et al., (hep-ph/0002108)

680 km disfavored by backgrounds

730 km disfavored by backgrounds

7300 km disfavored by statistics
However, if LMA solar oscillation scenario is correct, things are much more complicated (and interesting).

Sensitivity to the “atmospheric term,” the “solar term,” and an interference term between them, all modified by matter effects. (The interference term contains the CP violation.)

To simplify as much as possible, take $\sin^2(2\theta_{23}) = \sin^2(2\theta_{12}) = 1$, and following Cervera, et al., expand to second order in the small parameters $\theta_{13}$ and $(\Delta m_{12}^2 L/E)$, ignoring matter effects:

$$P(\nu_\mu \rightarrow \nu_e) = 2\theta_{13}^2 \sin^2(1.27 \Delta m_{13}^2 L/E) + 0.81(\Delta m_{12}^2 L/E)^2$$

$$+ 1.27 \theta_{13} \Delta m_{12}^2 L/E \sin(1.27 \Delta m_{13}^2 L/E) \cos(\pm \delta - 1.27 \Delta m_{13}^2 L/E)$$
Measurement of $\theta_{13}$, the Sign of $\Delta m_{13}^2$, and $\delta$

- For a short baseline (NuMI or CNGS), each term has the same $L/E$ dependence and we measure

$$P(\nu_\mu \rightarrow \nu_e) = \left[ 2\theta_{13}^2 + 0.5(\Delta m_{12}^2 / \Delta m_{13}^2)^2 + \theta_{13}(\Delta m_{12}^2 / \Delta m_{13}^2)\cos(\delta) \right]$$

$$\times (1.27 \Delta m_{13}^2 L / E)^2$$

with a small modification due to matter effects.

- If $\Delta m_{12}^2$ is known from solar measurements, then $\theta_{13}$ can be recovered with a small uncertainty due to the $\cos(\delta)$ term.

- However, the $\cos(\delta)$ term cannot be separated from $\theta_{13}$.

- The CP-violating $\sin(\delta)$ term, which reverses with polarity, is lower order and has been dropped.
Measurement of $\theta_{13}$, the Sign of $\Delta m_{13}^2$, and $\delta$

- At longer baselines, we want to use the different $L/E$ dependence to untangle the different terms, including the CP violating term:

$$P(\nu_\mu \to \nu_e) = 2\theta_{13}^2 \sin^2 (1.27 \Delta m_{13}^2 L/E) + 0.81(\Delta m_{12}^2 L/E)^2$$

$$+ 1.27 \theta_{13} (\Delta m_{12}^2 L/E) \sin(1.27 \Delta m_{13}^2 L/E) \cos(\pm \delta - 1.27 \Delta m_{13}^2 L/E)$$

- This requires a fairly large $L/E$: $E \sim 6$ GeV for $L = 3000$ km.

- The temptation is to increase $L$ further. This does not work, at least for measuring CP violation, for a somewhat subtle reason.
Measuring CP Violation

- CP violation only occurs for three or more neutrino flavors. Therefore, it has to be proportional to every MNS matrix element and every oscillatory term. That is why it occurs only in the interference term.

- For this reason, unless the solar solution is LMA, measuring CP violation is hopeless.

- Using the same LMA approximation, the CP odd term in the absence of matter effects is

\[
P_{CP^-}(\nu_\mu \rightarrow \nu_\tau) = \pm 2\theta_{13} \sin(\delta) \\
\times \sin\left(\frac{1.27 \Delta m_{12}^2 L}{E}\right) \sin\left(\frac{1.27 \Delta m_{13}^2 L}{E}\right) \sin\left(\frac{1.27 \Delta m_{23}^2 L}{E}\right)
\]
The problem with long (~8000 km) baselines arises due to the matter effect for $\Delta m_{12}^2$.

- The effective $\Delta m^2$ added by the earth is $2AE$, where

$$A = \sqrt{2} G_F n_e \approx 1.5 \times 10^{-4} \text{ eV}^2/\text{GeV}$$

for earth density corresponding to $L = 8000 \text{ km}$.

- In the presence of matter

$$\sin \left( \frac{1.27 \Delta m_{12}^2 L}{E} \right) \rightarrow \frac{\Delta m_{12}^2}{| -2AE \pm \Delta m_{12}^2 |} \sin \left( \frac{1.27 | -2AE \pm \Delta m_{12}^2 | L}{E} \right)$$

- For reasonable energies, $E \geq 4 \text{ GeV}$, $2AE$ is at least an order of magnitude larger than $\Delta m_{12}^2$. Thus, $| -2AE \pm \Delta m_{12}^2 | \rightarrow 2AE$.  

Gary Feldman SLAC Summer Institute

14 - 25 August 2000

126
Measuring CP Violation

- Therefore, the CP odd term contains a pure matter oscillation,

\[ P_{CP^-}(\nu_\mu \rightarrow \nu_e) \propto \left( \frac{\Delta m^2_{12}}{2AE} \right) \sin(2.54AL), \]

which goes to zero at 8000 km, independent of all parameters.

- Calculation by Cervera et al.

\[ \Delta m^2_{23} = 2.8 \times 10^{-3} \text{ eV}^2 \]
\[ \Delta m^2_{12} = 1.0 \times 10^{-4} \text{ eV}^2 \]
\[ \theta_{23} = 45^\circ; \ \theta_{12} = 22.5^\circ \]
\[ \theta_{13} = 8^\circ; \ \delta = 90^\circ \]
Measuring CP Violation

- Fits by Cervera et al. for 1021 decays at 50 GeV with a 40 kT detector.
- $\Delta m_{23}^2 = 2.8 \times 10^{-3} \text{ eV}^2$; $\Delta m_{12}^2 = 1.0 \times 10^{-4} \text{ eV}^2$
- $\theta_{23} = 45^\circ$
- $\theta_{12} = 22.5^\circ$
- $\theta_{13} = 8^\circ$
- $\delta = 54^\circ$
Where to Build a Neutrino Factory

- For a ~3000 km baseline, the choices are quite limited.