Greiner Lab

Mott picture


Home

Research
Publications

Contact Info
People
Open Positions
Courses

Gallery
Links





Picture Markus GreinerMarkus Greiner:

Email: greiner@physics.harvard.edu
Tel: (617) 595-3811

Mailing Address:
Harvard University, Department of Physics
Jefferson 353
17 Oxford Street
Cambridge, MA 02138
Selected Publications:

Bose-Einstein condensates and Mott insulators in 3D optical lattices:
Greiner, M., O. Mandel, T. Esslinger, T.W. Hänsch and I. Bloch,
Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
Nature, 415(6867): p. 39, 2002.
Greiner, M., O. Mandel, T.W. Hänsch and I. Bloch,
Collapse and revival of the matter wave field of a Bose-Einstein condensate.
Nature, 419(6901): p. 51, 2002.
Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.
Controlled collisions for multi-particle entanglement of optically trapped atoms.
Nature, 425(6961): p. 937, 2003.

Fermi condensates:
Regal, C. A., Greiner, M., Jin, D.S.
Observation of resonance condensation of fermionic atom pairs.
Phys. Rev. Lett. 92, 040403 (2004)
Greiner, M., Regal, C. A., Jin, D. S.
Emergence of a molecular Bose-Einstein condensate from a Fermi gas.
Nature 426, p. 537 (2003).

Research experience:

8/05 – present     Assistant professor of physics at Harvard University, Cambridge.

4/03 – 8/05         Postdoctoral research position at JILA, Boulder, Colorado, in the group of Deborah Jin. Present results:
-     Creation of a fermionic condensate of ultracold atoms. This condensate of
      generalized Cooper pairs is considered to be the first realization of a
      fermionic superfluid in the strongly interacting BCS-BEC crossover regime.
-     Realisation of a molecular Bose-Einstein condensate, created from
      an ultracold gas of fermionic atoms.

3/00 – 4/03         PhD in experimental Physics:
-     Bose-Einstein condensates in three-dimensional optical lattices.
-     Quantum Phase transition from a superfluid to a Mott insulator in
      an ultra cold gas of atoms.
-     Collapse and revival of the matter wave field of a Bose-Einstein    condensate.
-     Spin selective transport in optical lattices; Creation of large scale
      entanglement of atoms in optical lattices via cold coherent collisions.
-     Creation of Molecules via photo-association in an optical lattice.
Conception and realization of the experiments and theoretical calculations;
in the group of T. Hänsch, Ludwig Maximilians Universität, Munich, and Max-Planck Institut für Quantenoptik, Garching.
The thesis was awarded with the price of the American physical society for the best thesis in AMO physics, DAMOP 2004, and the William L. McMillan award for outstanding contributions in condensed matter physics

1/99 – 2/00         Diploma Thesis in experimental Physics:
”Transport of magnetically trapped atoms: a simple approach to Bose-Einstein condensation”.
Development of a new scheme for a Bose-Einstein condensate apparatus for optical lattice experiments; design and set up of the apparatus; in the group of T. Hänsch, Ludwig Maximilians Universität,
Munich.

Awards:

  • Winner of the thesis award of the American physical society (APS), DAMOP 2004.
  • Winner of the William L. McMillan award (University of Illinois) for outstanding contributions in condensed matter physics.