Intro Physics II
Physics 11b

Electricity and Magnetism
Light and Optics
Modern Physics
Teaching Staff

- **Masahiro Morii** gives the lectures
 - Here (Sci. Ctr. B) Tuesday and Thursday @ 10:00-11:30

- **Shaun Serej** leads the sections
 - With TFs Vincenzo Vitelli, Loren Hoffman, and Lars Grant
 - 1 hour/week

- **Pamela Gay** supervises the lab
 - With TFs Yina Mo and Timofey Rostunov
 - 3 hours every 2 weeks

- **Carol Davis** keeps it all running smoothly
Prerequisite Courses

- **Physics 11a**
 - Introductory Physics: Mechanics, Waves
 - If you have not finished 11a, you need to get a written permission from David Morin

- **Mathematics 21a**
 - Linear Algebra and Differential Equations
 - This can be taken concurrently
 - I assume you are familiar and comfortable with 1-dimensional calculus
Textbooks

- **Physics for Scientists & Engineers** (Serway and Jewett vol. II)
 - Required
 - Simple and practical textbook
 - Good illustrations

- **Introductory Electromagnetism** (Purcell)
 - Suggested reading
 - Main textbook for Physics 15b
 - Deeper understanding of physics behind E&M
 - Slightly more advanced math
Homework

- Problem sets are distributed on Thursdays
 - You get the first one today
- You are encouraged to work together in groups
 - Each of you must write up & turn in your own report
 - Copying your neighbor’s won’t do much for your exam
- Problem sets due next week Friday at 4 PM
 - Mailboxes outside Sci. Ctr. 109
 - Answers are posted immediately on course website
 - No late homeworks accepted
 - Graded reports will be returned at the sections
Sections

- Twelve 1-hour discussion sections are offered
 - Monday 2 PM, 2 PM
 - Tuesday 2 PM, 3 PM, 7 PM
 - Wednesday 9 AM, 1 PM, 1 PM, 7 PM
 - Thursday 9 AM, 2 PM, 3 PM
- Locations (in Sci. Ctr.) are on the syllabus and will be posted on the web
- Please use online sectioning tool to sign up by the end of the Study Card Day
- Next week’s sections will be “Meet the TF Hour”
 - Go to any section you like and ask questions
Labs

- 12 lab sections are offered
 - Monday 7 PM
 - Tuesday 3:30 PM, 7 PM
 - Wednesday 12 PM, 3:30 PM, 7 PM
 - Thursday 3:30 PM

- Five experiments in 10 weeks
 - Each takes 3 hours + writing your report

- Reports are due at 8 AM, 1 week after each lab
 - Mailboxes outside SC 109

- Please use online sectioning tool to sign up for a lab section by the end of the Study Card Day
Exams

- Two midterms and a final exam
 - Midterms (tentatively) on March 3 and April 7
 - First one just before the 5th Monday
 - Final during the exam period: May 19-27

- Final will be graded for “resurrection”

 \[
 \text{Full score of your final} = 200 + \frac{\text{What you missed in HW and midterms}}{2}
 \]

- Can make up half of HW & midterm points missed
- We will tell each of you individually how much before the final
Grades

- Add up
 - Homework 300 pts.
 - Mid-terms 150 + 200 pts.
 - Laboratory 150 pts.
 - Final Exam 200-525 pts.

- Will curve if necessary
 - Only small adjustments
 - “Resurrection” mechanism takes care of calibration

<table>
<thead>
<tr>
<th>Course score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>950-1000</td>
<td>A</td>
</tr>
<tr>
<td>900-949</td>
<td>A-</td>
</tr>
<tr>
<td>870-899</td>
<td>B+</td>
</tr>
<tr>
<td>830-869</td>
<td>B</td>
</tr>
<tr>
<td>800-829</td>
<td>B-</td>
</tr>
<tr>
<td>770-799</td>
<td>C+</td>
</tr>
<tr>
<td>730-769</td>
<td>C</td>
</tr>
<tr>
<td>700-729</td>
<td>C-</td>
</tr>
<tr>
<td>670-699</td>
<td>D+</td>
</tr>
<tr>
<td>630-669</td>
<td>D</td>
</tr>
<tr>
<td>600-629</td>
<td>D-</td>
</tr>
<tr>
<td><600</td>
<td>God forbid</td>
</tr>
</tbody>
</table>
I don’t check your attendance
 - TFs are paying attention in the labs and sections

If you aren’t
 - Coming to the lectures
 - Going to the labs
 - Going to the sections
 - Then you aren’t getting what you are paying for

Homework and exams are not everything!
Getting Best Out of Us

- Come and talk to us!
 - Ask questions in the lecture, lab and sections
 - Come to office hours (to be announced soon)
 - I am in Lyman 239 most of the time
 - Other staff’s contact info on the web

- Want something changed or improved?
 - Use “Early Evaluation” on website for anonymous feedback
Plan for the Semester

- **Electricity and Magnetism**
 - Electrical and Magnetic phenomena
 - Circuits
 - Maxwell’s equations
 - Electromagnetic waves (a.k.a. “light”)

- **Electromagnetic Crisis ➔ Quantum Mechanics**
 - Quantum states
 - Basics of atomic structure
Physics 11a
Lecture #1

Electric Charge
Coulomb’s Law
Goals for Today

- Introduction
 - Electromagnetism in the Big Picture
- Electric charge
 - Conservation law
- Coulomb’s Law
 - Forces between two charged objects ➔ Inverse-square law
 - More than two objects ➔ Superposition principle
Four Forces

There are 4 fundamental forces in Nature

- **Gravity**
 - Long distance. Keeps planets and satellites in orbits
 - Classical model (Newtonian) simple and accurate
 - Modern model (General Relativity) complex and more accurate

- **Electromagnetic force**
 - Long distance. Responsible for most daily things
 - Classical model (Maxwell) simple, accurate, and identical to the modern model

- **Strong nuclear force**
 - Short distance. Keeps protons and neutrons in atomic nuclei

- **Weak nuclear force**
 - Short distance. Responsible for nuclear β-decays
Electrical Charge

- Objects don’t always respond to electricity
 - Something must be added ➔ or they must be “charged”
- Experiments have told us:
 - Charges can be positive or negative (Franklin)
 - They come in small same-sized units (Millikan)
 - Each unit is so small, and the number of units in human-size object so large (~10^{23}), it looks like continuous
- Turns out to be an intrinsic property of the elementary particles that make up any object in the universe
 - Proton is positively charged
 - Electron is negatively charged by the same amount
Conservation of Charge

- Charge cannot be created or destroyed
 - You can only move them from one object to another
- True even in extreme conditions where particles are destroyed and created
 - Example from high-energy collision of an electron and a positron (anti-electron)

\[e^+ e^- \rightarrow \pi^+ \pi^- \pi^+ \pi^- \pi^+ \pi^- \]

Two particles destroyed
Six particles created
Total charge remains zero

An event from the CLEO Experiment
Courtesy of A. Foland
Forces Between Charges

- Unlike most forces in 11a, the electric force (F_e) between two charges (q_1 and q_2) work over distance (r)
 - Smaller $r \Rightarrow$ stronger F
 - Larger $r \Rightarrow$ weaker F

- Measurements show
 - $F \propto \frac{q_1 \times q_2}{r^2}$
 - Proportional to both charges
 - Inversely proportional to the square of the distance

- Same inverse-square law as gravity
 - $F_{\text{grav}} \propto \frac{m_1 \times m_2}{r^2}$
Coulomb’s Law

- Force has direction as well as strength ➔ Vector
 - Parallel to the line connecting the charges
 - Which way?

\[\mathbf{F}_{12} = k_e \frac{q_1 q_2}{r^2} \hat{\mathbf{r}} \]

- Coulomb constant
- Force caused by 1 acting on 2

- Sign of \(F_{12} \) depends on whether \(q_1 \) and \(q_2 \) have the same or opposite signs
There are two systems of units in E&M: SI and CGS. We stick with SI, as Serway and Jewett do.

Charge is measured in Coulomb (symbol C)

\[1 \text{ Coulomb} = 6.24 \times 10^{18} \text{ protons} \]

Force is measured in Newton, distance in meter.

Now we can write down the constant

\[k_e = 8.9875 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \]

8987500000 Newtons
Coulomb’s Law – SI Version

- In SI, we usually write Coulomb’s law as
 \[F_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r^2} \hat{r} \]

 - Constant \(\varepsilon_0 \) is known as permittivity of vacuum
 \[\varepsilon_0 = 8.8542 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2 \]

- This absurdity will start to make sense when we do capacitance
Inverse-Square Laws

- Electric force and gravity share the \(r \)-dependence

\[
\mathbf{F}_e = \frac{1}{4\pi \varepsilon_0} \frac{q_1 q_2}{r^2} \hat{\mathbf{r}}
\]

\[
\mathbf{F}_g = -G \frac{m_1 m_2}{r^2} \hat{\mathbf{r}}
\]

- Both are inverse-square laws
 - Much of what you learned about gravity will apply to electricity
 - One major difference: the signs

<table>
<thead>
<tr>
<th>Charge or Mass</th>
<th>Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric force</td>
<td>positive or negative</td>
</tr>
<tr>
<td>Gravity</td>
<td>only positive</td>
</tr>
</tbody>
</table>
Superposition Principle

- Suppose we have many charges distributed in space.
 - What is total force on charge Q from all the other charges?
- Principle of Superposition
 - Just add them up
 - Force from each one not affected by the others

\[
F_Q = \sum_i \frac{1}{4\pi\varepsilon_0} \frac{Qq_i}{r_{iQ}^2} \hat{r}_{iQ}
\]

\[
= \frac{Q}{4\pi\varepsilon_0} \sum_i \frac{q_i}{r_{iQ}^2} \hat{r}_{iQ}
\]

Force from the i-th charge.
Electric charge = How object responds to electric force
- Comes in positive and negative flavors
- Conserved

Electric force
- Coulomb’s Law
 \[F_e = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \hat{r} \]
 - Same inverse-square law as gravity
 - Sign makes the dynamics different

Superposition Principle
\[F_Q = \frac{Q}{4\pi\varepsilon_0} \sum_i \frac{q_i}{r_{iQ}^2} \hat{r}_{iQ} \]
- Next lecture will use this to explore more interesting problems