Physics 11b
Lecture #3

Electric Flux
Gauss’s Law
What We Did Last Time

- Introduced electric field \(\mathbf{E} \) by \(\mathbf{F}_Q = Q \cdot \mathbf{E}(\mathbf{r}) \)
- Field lines and the rules
 - From a positive charge to a negative charge
 - No splitting, merging, or crossing
 - Number of field lines \(\propto \) amount of charge
 - Density \(\propto \) \(\mathbf{E} \) field
- Was about to define electric flux
 - We continue from there…
Today’s Goals

- Define electric flux Φ_E
 - Start from the number of field lines
- Introduce Gauss’s Law
 - Useful tool for many E&M problems
- Apply Gauss’s Law to a few examples
 - Spherical charge distribution
 - Infinite sheet of charge
- Discuss basic rules of conductors
 - Derive them using Gauss’s Law
Consider a flow of water

- The water velocity is described by

\[\mathbf{v}(x, y, z) \equiv v_x \hat{x} + v_y \hat{y} + v_z \hat{z} \equiv (v_x, v_y, v_z) \]

Immerse a tiny wire loop

- Area of the loop is \(A \)
- Unit vector perpendicular to the loop is \(\hat{n} \)

Define the loop area vector as \(\mathbf{A} \equiv A \hat{n} \)

- It represents the size and the orientation of the loop
- The loop is so small that the shape is irrelevant

Q: how much water will flow through the loop?

- Let’s call it “flux” \(\Phi_v \)
Water Flux

- It depends on how the loop is oriented w.r.t. the flow
 - Assuming constant velocity and a flat loop:
 - If $A \parallel v \rightarrow \Phi_v = 0$
 - If $A \perp v \rightarrow \Phi_v = A v$
 - If A and v makes angle $\theta \rightarrow \Phi_v = A v \cos \theta$

- Generalize:

\[\Phi_v = \int v \cdot dA \]

Integrate over the area of the loop
Imagine a small area in an electric field
- Let’s call the area A
- It could be any shape, any angle

How many field lines run through this area?

Remember: density of field lines $\propto E$
- So we are talking about “flux” of E
- Math is identical to the water flow case

$$\Phi_E = \int E \cdot dA$$
We now define electric flux as \(\Phi_E = \int_S \mathbf{E} \cdot d\mathbf{A} \)

- \(S \) is a surface area, \(d\mathbf{A} = dA \mathbf{n} \)
- \(\Phi_E \) is proportional to the number of field lines going thru \(S \)

- **Unit** of \(\Phi_E \) is Newton·m²/Coulomb (N·m²/C)

- **NB**: sign of flux depends on the direction of \(\mathbf{n} \)
 - That is, you must define which side of \(S \) is “positive”

\[S = 1 \, \text{m}^2 \quad \Phi_E = -1 \, \text{Nm}^2/\text{C} \quad E = 1 \, \text{N/C} \]

\[S = 1 \, \text{m}^2 \quad \Phi_E = 1 \, \text{Nm}^2/\text{C} \]
Which Way is $d\mathbf{A}$?

- Defined unambiguously only for a closed surface
 - i.e., a surface that wraps around a volume completely
 - At any point in space, $d\mathbf{A}$ is perpendicular to the surface
 - It points towards the “outside” of the surface

- In other words: flux $\Phi_\mathbf{E}$ (or $\Phi_\mathbf{v}$) is positive if the net flow is coming out of the volume
Consider a sphere of radius r around a charge q

- n always points outward
- We know E and n are parallel
- We also know $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$

$$\Phi_E = \int_{\text{sphere}} E \cdot dA = 4\pi r^2 \times E = \frac{q}{\varepsilon_0}$$

This is hardly surprising

- Φ_E should be proportional to the number of field lines coming out of charge q, which should be proportional to q
- We just didn’t know that the constant was $1/\varepsilon_0$
Consider a sphere in a uniform \mathbf{E} field

- Take polar coordinates (θ, ϕ) relative to the direction of \mathbf{E}

\[
\Phi_E = \iint E \cos \theta r^2 \sin \theta d\theta d\phi
\]

\[
= 2\pi Er^2 \int_0^\pi \cos \theta \sin \theta d\theta
\]

\[
= 0
\]

Again hardly surprising

- Incoming \mathbf{E} on one side is balanced by outgoing \mathbf{E}
- We know field lines never disappear without a charge
Gauss’s Law

- Net flux through a closed surface is given by the net charge inside the surface by

\[\Phi_E = \oint E \cdot dA = \frac{q_{in}}{\varepsilon_0} \]

- This seems natural, from what we’ve found so far
- Formal proof is found in textbook 24.5

- The law connects charge and field in yet another way
 - Coulomb’s law did it one way – and they are consistent

- It’s more useful than it looks
 - Let’s investigate
Problem: Calculate the electric field (everywhere in space) due to a uniformly-charged sphere

Solid sphere of radius R
Constant charge density

Solution #1

I know the E due to a point charge dq by Coulomb’s Law
I know how to integrate
Solution #2

Why would I ever do an integral is somebody (Gauss) already did it for me?

First, consider a sphere S_1 outside R

Apply Gauss’s Law to S_1

$$
\Phi_E = \oint_{S_1} \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\varepsilon_0}
$$

Because of symmetry, \mathbf{E} should be same size and parallel to $d\mathbf{A}$ everywhere on S_1

$$
\oint_{S_1} \mathbf{E} \cdot d\mathbf{A} = E \cdot 4\pi r^2
$$

Combine

$$
E = \frac{Q}{4\pi \varepsilon_0 r^2}
$$
Apply Gauss’s Law

- First, consider a sphere S_2 inside R
 - Apply Gauss’s Law to S_2
 \[
 \Phi_E = \oint_{S_1} \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\text{in}}}{\varepsilon_0}
 \]
 - Difference: q_{in} is only a fraction of Q that is inside S_2
 \[
 q_{\text{in}} = Q \frac{r^3}{R^3}
 \]
 - Ratio of volumes = (ratio of radii)3
 - Same symmetry argument gives
 \[
 \oint_{S_2} \mathbf{E} \cdot d\mathbf{A} = E \cdot 4\pi r^2
 \]
 - Combine
 \[
 E = \frac{Qr}{4\pi\varepsilon_0 R^3}
 \]
One point remains before we can get full credit
- We were asked to determine the electric field \(\Rightarrow \) a vector
- We need to specify the direction!

Which way is \(\mathbf{E} \)?
- Problem is spherically symmetric
 - \(\mathbf{E} \) must point radially (in or out)

Complete solution:

\[
\mathbf{E} = \begin{cases}
\frac{Q}{4\pi \varepsilon_0 r^2} \hat{r} & \text{for } r \geq R \\
\frac{Qr}{4\pi \varepsilon_0 R^3} \hat{r} & \text{for } r < R
\end{cases}
\]
Checklist for E&M Problems

- Read the problem
- Look for symmetries:
 - Which coordinate system works best?
 - What cancels out?
 - Which way the vectors should be?
- Look for ways to avoid integration
- Turn the math crank
- Write down the complete solution (magnitudes and directions for all the different regions)
- Read the problem again – did you answer what is asked?
- Box the solution: your TF will be grateful
Problem: Calculate the electric field at a distance z from a positively charged infinite plane.

- Surface charge density: $\sigma = \frac{\text{charge}}{\text{area}}$

Use Gauss again:
- Which surface to use?
 - What symmetry do we have?
- Consider the cylinder ➔
 - Area A and height z

- E field must be vertical
 - How do we know that?
Infinite Sheet of Charge

- Now the total flux $\Phi_{\text{total}} = \Phi_{\text{top}} + \Phi_{\text{side}} + \Phi_{\text{bottom}}$
 - Side is parallel to $\mathbf{E} \Rightarrow$ No flux
 - Top and bottom are symmetric \Rightarrow Same flux

$$\Phi_{\text{total}} = 2\Phi_{\text{top}} = 2AE$$
$$q_{\text{in}} = \sigma A$$

$2AE = \frac{\sigma A}{\varepsilon_0}$
$$E = \frac{\sigma}{2\varepsilon_0}$$

- Don’t forget the direction!

$$\mathbf{E} = \begin{cases}
 +\frac{\sigma}{2\varepsilon_0} \hat{z} & \text{for } z > 0 \\
 -\frac{\sigma}{2\varepsilon_0} \hat{z} & \text{for } z < 0
\end{cases}$$

The result is worth remembering:

Infinite sheet of charge produces uniform \mathbf{E} field of $\sigma/2\varepsilon_0$ above and below it
Conductor

- A conductor conducts electric current
 - Conductive metal contains freely-movable electrons
- We won’t deal with current until later
 - What we are doing is “electrostatics” = no moving charges
 - When there is no charge movement, the conductor is in electrostatic equilibrium
- Immediately obvious: there shouldn’t be any E field in the conductor in electrostatic equilibrium
 - Otherwise the free electrons would be moving
 - There are less obvious but interesting rules
Free electrons are negative, but the atoms in the conductors are charge neutral

- So the “core” of the atom must be a positive ion
- Ions are fixed, electrons move
- Their charges usually cancel

What if we took away (or add) some electrons?

- There will be net positive (or negative) charge
- Where does that go?

Answer: on the surface of the conductor
Suppose there is a net charge $+q$ somewhere inside a conductor in electrostatic equilibrium.

Imagine a sphere around the charge and apply Gauss's law:

$$\Phi_E = \oint_S \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\varepsilon_0} \neq 0$$

For the integral to be non-zero, \mathbf{E} must be non-zero somewhere on the surface of S.

But \mathbf{E} is zero inside the conductor!

Rule #2: there is no net charge anywhere inside a conductor in electrostatic equilibrium.
Surface Charge and E

- Charge can only be on the surface
 - Let’s call the charge density $\sigma = \frac{Q}{\text{area}}$
 - NB: σ may not be constant for the whole surface
- Apply Gauss on a cylinder sticking out of the metal surface
 - $\Phi_{\text{total}} = \Phi_{\text{top}} + \Phi_{\text{side}} + \Phi_{\text{bottom}}$

 $= 0$

 - $\Phi_{\text{total}} = \Phi_{\text{top}} = AE$
 - $q_{\text{in}} = \sigma A$

- Rule #3: E field just outside a conductor in electrostatic equilibrium is perpendicular to the surface and the magnitude is $\frac{\sigma}{\varepsilon_0}$
Defined electric flux \(\Phi_E = \int_S \mathbf{E} \cdot d\mathbf{A} \)

- \(\propto \) number of field lines through the surface

Gauss’s Law \(\Phi_E = \frac{q_{\text{in}}}{\varepsilon_0} \)

- Very useful for solving \(\mathbf{E} \) field problems

Applied it on spherical charge distribution and infinite sheet

- Infinite sheet generates uniform \(\mathbf{E} \) field \(E = \frac{\sigma}{2\varepsilon_0} \)

Also used on conductors in electrostatic equilibrium

- Charge (if any) lives on the surface