Electric Potential

Textbook Chapter 25
What We Did Last Time

- Defined electric flux \(\Phi_E = \int_S \mathbf{E} \cdot d\mathbf{A} \)
 - \(\propto \) number of field lines through the surface

- Gauss’s Law \(\Phi_E = \frac{q_{\text{in}}}{\varepsilon_0} \)
 - Very useful for solving \(\mathbf{E} \) field problems
 - Applied it on spherical charge distribution and infinite sheet
 - Infinite sheet generates uniform \(\mathbf{E} \) field \(E = \frac{\sigma}{2\varepsilon_0} \)
 - Also used on conductors in electrostatic equilibrium
 - Charge (if any) lives on the surface
Today’s Goals

- Introduce electric potential V
 - How much work is necessary to move a charge in an electric field?
 - Similar to potential energy in 11a
- Calculate the electric potential generated by
 - a point charge
 - multiple point charges
 - continuous charge distribution
- Learn to go from V to E and E to V
 - Not so difficult, but takes a little practice
How much work is necessary to lift an object of mass \(m \) by a height \(h \)?

- Work = force \(F \) \(\times \) distance

 Same work is needed if you go up the slope because gravity is a conservative force.

Object at height \(h \) has a potential energy \(mgh \).
Electric Potential Energy

- Consider moving a charge \(+q \) against \(\mathbf{E} \) field
 - How much work \(W \) is necessary?
 \[
 F = qE \quad \Rightarrow \quad W = Fx = qEx
 \]
- What if the movement is at an angle?
 - What matters is the component of \(\mathbf{F} \) parallel to the movement
 - Let’s call the movement \(\mathbf{s} \)
 \[
 F_{\parallel} = -F \cos \theta \quad \Rightarrow \quad W = F \cos \theta \times s = -\mathbf{F} \cdot \mathbf{s} = -q\mathbf{E} \cdot \mathbf{s} = qEx
 \]
Electric Potential Energy

- Make the movement \(s \) very small \(\Rightarrow \) call it \(ds \)
 - (Very small) work \(dW \) is \(dW = -qE \cdot ds \)
- We can now integrate this to calculate work needed for any movement
 \[
 W = -q \int_{A}^{B} E \cdot ds
 \]
- \(W \) doesn’t depend on exactly how you go from \(A \) to \(B \)
 - Any alternative path will cost you exactly the same work
 - In other words, electric force is conservative

How do we know that?
Is Electric Force Conservative?

- Electric forces between any objects are sum of the forces between constituent particles (electrons & protons)
 - The latter is Coulomb:
 \[
 F = \frac{1}{4\pi\varepsilon_0} \frac{qq'}{r^3} \hat{r}
 \]
 - Besides constant and sign, it’s same as gravity
 - Gravity is a conservative force ➔ Electric force must be!

- We’ll see this is true (in a wayward fashion) later
 - Let us take it for granted now…
Electric Potential

- Electric force is conservative
 - *How* you get from *A* to *B* is irrelevant
 \[
 W_{A\to B} = -q\int_A^B \mathbf{E} \cdot d\mathbf{s} = -q\int_A^B \mathbf{E} \cdot d\mathbf{s}'
 \]
 - *W* is a function of positions *A* and *B*
 - *W* is also proportional to *q*

- We can define a function *V(x, y, z)* so that
 \[
 W_{A\to B} = q\left(V(x_B, y_B, z_B) - V(x_A, y_A, z_A)\right)
 \]
 - *V* is called the *electric potential*
 - *qV* is the *electric potential energy* of the charge *q*

Corresponds to the height *h* for gravity
Electric Potential

A charge q moving from A to B “climbs up” the electric potential by $\Delta V = V(B) - V(A)$

- This takes work $W = q\Delta V$
 - The charge gains potential energy $q\Delta V$

$$W_{A\rightarrow B} = -q\int_{A}^{B} \mathbf{E} \cdot d\mathbf{s} \quad \rightarrow \quad \Delta V = -\int_{A}^{B} \mathbf{E} \cdot d\mathbf{s}$$

- Only the potential difference ΔV can be defined or measured
 - Absolute value at any point (e.g. $V = 0$) has no meaning
 - You can define $V = 0$ in any convenient way
Units

- Work = energy = charge x potential

\[
[potential] = \frac{[energy]}{[charge]} = \frac{\text{Joule}}{\text{Coulomb}} = \text{Volt}
\]

- Potential is also electric field x distance

\[
[field] = \frac{[potential]}{[distance]} = \frac{\text{Volt}}{\text{meter}}
\]

- I told you Newton/Coulomb earlier
 - It’s the same, but V/m is more commonly used

\[\Delta V = -\int_A^B \mathbf{E} \cdot ds\]
Uniform Field Example

- Connect a pair of parallel metal plates to a battery
 - “Positive” plate has a ΔV higher potential than the “negative”
 - E field between the plates is $E = \frac{\Delta V}{d}$
- Charges $+q$ and $-q$ feel the force $qE = q\frac{\Delta V}{d}$
 - $+q$ toward the negative plate, $-q$ toward the positive plate
- If you let the $+q$ charge go from positive plate, it will “drop” on the negative plate
 - Kinetic energy when it hits the plate $= q\Delta V$
Point Charge Example

- A point charge $+q$ creates electric field
- Let’s calculate ΔV between A and B

$$\Delta V = - \int_A^B \mathbf{E} \cdot d\mathbf{s} = - \int_A^B E \cos \theta ds$$

radial component of $d\mathbf{s}$

$$\Delta V = - \int_{r_A}^{r_B} E dr = - \frac{q}{4\pi \varepsilon_0} \int_{r_A}^{r_B} \frac{1}{r^2} dr = - \frac{q}{4\pi \varepsilon_0} \left[-\frac{1}{r} \right]_{r_A}^{r_B}$$

- We find $V(r) = \frac{1}{4\pi \varepsilon_0} \frac{q}{r}$ works

Electric potential produced by a point charge
Don’t Get Confused

$E(r) = \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2} \hat{r}$

- E is a vector field \leftrightarrow V is a scalar field
- E goes with $1/r^2$ \leftrightarrow V goes with just $1/r$

- Visually:
 - E is expressed either by arrows or by field lines
 - V is expressed by equipotential surfaces
 - Like lines of equal height on maps, but in 3-dim.
Equipotential Surfaces

- They are really spherical shells
- But much easier to visualize in 2-dim.

What happens here?
Let’s add more charges in the system

- \(N \) charges of \(q_i \) each \((i = 1, 2, \ldots N) \) at positions \(r_i \)
- We know \(E \) just adds up

\[
\Delta V = -\int_{A}^{B} E \cdot ds = -\int_{A}^{B} \sum_{i} E_i \cdot ds
\]

\(V \) must also just add up

\[
V(r) = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{|r - r_i|}
\]
Dipole Example

- Two charges $+q$ and $-q$ at $x = +d/2$ and $-d/2$
- Find potential $V(x,y,z)$ at any point (x,y,z)
- Distances from the charges:
 \[r_1 = \sqrt{(x-d/2)^2 + y^2 + z^2} \]
 \[r_2 = \sqrt{(x+d/2)^2 + y^2 + z^2} \]

\[
V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{\sqrt{(x-d/2)^2 + y^2 + z^2}} + \frac{-q}{\sqrt{(x+d/2)^2 + y^2 + z^2}} \right)
\]

- OK, it wasn’t pretty, but at least we didn’t have to add vectors $\rightarrow V$ is often easier to calculate than E
- Can we calculate E out of V?
Field and Potential

- We get V by line-integrating $E \rightarrow$ What’s reverse?
 - Consider small movement Δx in the x-direction
 - Potential increases $V \rightarrow V + \Delta V$
 \[
 \Delta V = -\mathbf{E} \cdot \Delta x \hat{x} = -E_x \Delta x
 \]
 - Make Δx really small $\rightarrow 0$
 \[
 \lim_{\Delta x \rightarrow 0} \frac{\Delta V}{\Delta x} = \frac{\partial V}{\partial x} = -E_x
 \]
 Same for y and z

- E is (negative) derivative of V
 \[
 \mathbf{E} = (E_x, E_y, E_z) = -\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z} \right)
 \]
 Known as the gradient of V
Dipole Example

- We’ve got $V \rightarrow$ Let’s do E

\[V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{\sqrt{(x-d/2)^2 + y^2 + z^2}} + \frac{-q}{\sqrt{(x+d/2)^2 + y^2 + z^2}} \right) \]

- Let me just do E_x

\[E_x = -\frac{\partial V}{\partial x} = -\frac{1}{4\pi\varepsilon_0} \left(-\frac{1}{2} \frac{2q(x-d/2)}{((x-d/2)^2 + y^2 + z^2)^{3/2}} + \frac{1}{2} \frac{2q(x+d/2)}{((x+d/2)^2 + y^2 + z^2)^{3/2}} \right) \]

\[= \frac{q}{4\pi\varepsilon_0} \left(\frac{x-d/2}{((x-d/2)^2 + y^2 + z^2)^{3/2}} - \frac{x+d/2}{((x+d/2)^2 + y^2 + z^2)^{3/2}} \right) \]
Dipole Field

- A dipole in two perspectives

- Equipotential and field lines are perpendicular to each other
Continuous Charge Distribution

- We can extend from multiple charge to continuous charge distribution

\[V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_i}{|\mathbf{r} - \mathbf{r}_i|} \rightarrow V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r} \]

- Let’s try on the charged rod example from Lecture #2

\[r = \sqrt{x^2 + R^2} \]

\[V(0, R, 0) = \frac{1}{4\pi\varepsilon_0} \int_{-\ell/2}^{\ell/2} \frac{\frac{Q}{l} \, dx}{\sqrt{x^2 + R^2}} \]

Can’t do this integration? Look it up!
Charged Rod

- **Formula from textbook**

\[
\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2})
\]

Equation

\[
V(0, R, 0) = \frac{1}{4\pi \varepsilon_0} \int_{-\ell/2}^{\ell/2} \frac{Q}{\ell} \frac{dx}{\sqrt{x^2 + R^2}}
\]

\[
= \frac{Q}{4\pi \varepsilon_0 \ell} \left[\ln \left(\frac{\ell}{2} + \sqrt{\frac{\ell^2}{4} + R^2} \right) - \ln \left(-\frac{\ell}{2} + \sqrt{\frac{\ell^2}{4} + R^2} \right) \right]
\]
Summary

- Introduced **electric potential** V
 - Work required to move a charge q from A to B is
 \[W_{A\to B} = -q \int_A^B \mathbf{E} \cdot d\mathbf{s} = q \Delta V \]
 - \mathbf{E} field is negative gradient of V
 \[\mathbf{E} = (E_x, E_y, E_z) = -\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z} \right) \]
- A point charge q generates potential
 - For multiple and continuous charge,
 \[V(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \sum_i \frac{q_i}{|\mathbf{r} - \mathbf{r}_i|} \quad V(\mathbf{r}) = \frac{1}{4\pi \varepsilon_0} \int \frac{dq}{r} \]