Capacitance

S&J Chapter 26
What We Did Last Time

- Electric potential due to continuous charge distributions
 - Use \(V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r} \)
 - Electric field/potential due to spherical charge distribution
 - Looks like a point charge from outside
 - Zero inside
- Discussed conductors
 - Electric shielding (Faraday cage)
- Millikan’s oil-drop experiment
Define capacitance
- Two conductors with electric charge → What is the potential difference between them?
- Study parallel-plate capacitor
 - Will also do a cylindrical one

Combination of capacitors → Rules for “additions”
- Depend on the configuration: parallel and serial

Discuss energy stored in a capacitor
- And where the energy is
Potential Between Conductors

- We’ve learned:
 - Electric potential V of a contiguous conductor is constant
 - Electric field E exists only outside conductors
 - Surface charge σ of a conductor is proportional to E just outside the surface

- Consider two charged conductors
 - What’s the $\Delta V = V_1 - V_2$ between them?
Capacitance

- ΔV must be proportional to q
 \[\Delta V \propto q \]

- Define the capacitance C between the two conductors:
 \[C \equiv \frac{q}{\Delta V} \]
 or
 \[q = C \Delta V \]

- It's the amount of electric charge required to produce unit difference in electric potential.

- Unit: Farad = \[\frac{\text{Coulomb}}{\text{Volt}} \]

- Too big for practical use → Use $\mu F = 10^{-6} F$, pF = $10^{-12} F$
Parallel Plate Capacitor

- Two metallic plates placed close to each other
 - Most common form of capacitors
 - Area A, spacing d
- Electric field E between the plate is uniform
 - Not at the edge, but that’s a small effect if d is small compared with the size of the plates
- From Lecture #3, we know the relation between E and the charge density

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{\varepsilon_0 A}$$
$$\Delta V = Ed = \frac{Qd}{\varepsilon_0 A}$$

$$C = \frac{Q}{\Delta V} = \frac{\varepsilon_0 A}{d}$$

Remember this one?
Charge can only be on the surface
- Let’s call the charge density $\sigma = Q/\text{area}$
- NB: σ may not be constant for the whole surface

Apply Gauss on a cylinder sticking out of the metal surface
- $\Phi_{\text{total}} = \Phi_{\text{top}} + \Phi_{\text{side}} + \Phi_{\text{bottom}}$
- $\Phi_{\text{total}} = \Phi_{\text{top}} = AE$
- $q_{\text{in}} = \sigma A$
- $E = \frac{\sigma}{\varepsilon_0}$

Rule #3: E field just outside a conductor in electrostatic equilibrium is perpendicular to the surface and the magnitude is σ/ε_0
Parallel Plate Capacitor

- Capacitance of a parallel-plate capacitor
 \[C = \frac{Q}{\Delta V} = \frac{\varepsilon_0 A}{d} \]
 - Proportional to the area
 - Inversely prop. to the gap

- Does it make sense?
 - Capacitor with larger \(A \) should hold more charge, because the \(E \) field goes with the area density of the charge
 - Capacitor with larger \(d \) should have more potential \(\Delta V \) across it, because it’s \(E \) times the distance \(d \)

- To make a “large” capacitor, you need large plates held together very closely
Cylindrical Capacitor

- Roll up a parallel plate capacitor into cylinders
 - To save space...
- Use Gauss’s Law
 - Imagine a cylindrical surface of radius r
 - Top and bottom parallel to E → Ignore
 \[\Phi_{\text{total}} = \Phi_{\text{side}} = E \times 2\pi r \ell \]
- This must equal to Q/ε_0

\[2\pi Er\ell = \frac{Q}{\varepsilon_0} \quad \Rightarrow \quad E = \frac{Q}{2\pi \varepsilon_0 r \ell} \]

Weaker at larger r
Cylindrical Capacitor

- Integrate E to get ΔV
- Note E is parallel to r

$$\Delta V = \int_{a}^{b} E \, dr = \int_{a}^{b} \frac{Q \, dr}{2\pi \varepsilon_0 r \ell} = \frac{Q}{2\pi \varepsilon_0 \ell} [\ln r]_{a}^{b}$$

$$= \frac{Q}{2\pi \varepsilon_0 \ell} \ln \left(\frac{b}{a} \right)$$

$$C = \frac{Q}{\Delta V} = \frac{2\pi \varepsilon_0 \ell}{\ln(b/a)}$$

Does this make sense?
Cylindrical Capacitor

- We’ve found \(C = \frac{Q}{\Delta V} = \frac{2\pi \varepsilon_0 \ell}{\ln(b/a)} \)

- What if the gap is very narrow i.e., \(d = b - a \) is small
 \[
 \ln\left(\frac{b}{a}\right) = \ln\left(\frac{a+d}{a}\right) = \ln\left(1 + \frac{d}{a}\right)
 \]

- Taylor expansion tells us
 \[
 \ln\left(1 + \frac{d}{a}\right) \approx \ln(1) + \frac{d}{a} \ln(x) \bigg|_{x=1} \times \frac{d}{a} = \frac{d}{a}
 \]

\[
C \approx \frac{2\pi \varepsilon_0 \ell a}{d} = \frac{\varepsilon_0 A}{d}
\]

\(A = 2\pi a \ell = \text{Area of the inner cylinder} \)

Same as parallel-plate
Capacitor Arithmetic

- Electrical circuits get tedious to draw

 ![Capacitor schematic](image)

- Let’s consider combinations of capacitors

 - Parallel
 - Series
Parallel Combination

- Connect two capacitors C_1 and C_2 in parallel
 - Potential ΔV across C_1 and C_2 are the same
 - C_1 and C_2 hold charges
 \[Q_1 = C_1 \Delta V \quad Q_2 = C_2 \Delta V \]
 - Combined, they looks like a capacitor that holds
 \[Q = Q_1 + Q_2 = (C_1 + C_2) \Delta V \]
- Parallel Capacitor Rule:
 \[C_{\text{equiv.}} = C_1 + C_2 \]
Series Combination

Connect two capacitors C_1 and C_2 in series

- Charge Q in C_1 and C_2 are the same
 - Can you tell why?

- C_1 and C_2 hold charges
 \[Q = C_1 \Delta V_1 \quad Q = C_2 \Delta V_2 \]

- Total potential ΔV must be sum of ΔV_1 and ΔV_2
 \[\Delta V = \Delta V_1 + \Delta V_2 = \frac{Q}{C_1} + \frac{Q}{C_2} \]

- Series Capacitor Rule:
 \[\frac{1}{C_{\text{equiv.}}} = \frac{1}{C_1} + \frac{1}{C_2} \]
For arbitrary number of capacitors

\[C_{\text{equiv.}} = C_1 + C_2 + C_3 + \cdots + C_n \]

\[\frac{1}{C_{\text{equiv.}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots + \frac{1}{C_n} \]

Ex:

\[\frac{1}{\frac{1}{2 \mu F} + \frac{1}{5 \mu F} + \frac{1}{3 \mu F}} = \frac{1}{2 \mu F} + \frac{1}{5 \mu F} = \frac{1}{2.5 \mu F} \]
Energy in a Capacitor

- Capacitor \(C \) is holding charge \(q \)
- We move small charge \(dq \) from the negative plate to the positive plate
- Moving charge across potential requires work:

\[
 dW = dq \Delta V = dq \frac{q}{C}
\]

- Question: starting from \(q = 0 \), how much work is needed to charge up the capacitor until \(q = Q \)?
- Answer:

\[
 W = \int_{0}^{Q} \frac{q}{C} dq = \frac{Q^2}{2C} = \frac{1}{2} C (\Delta V)^2
\]

Capacitor must be storing this energy
Capacitor as a Storage Device

- Capacitor can hold energy \(U = \frac{1}{2} C(\Delta V)^2 \)
 - Not a lot for typical capacitance and voltage found in electric circuits
 - It can get big with high-voltage circuits
 - Don’t open up your TV set!
 - It may be sufficient for low-current circuits
 - “Battery-less” LED flashlights that light up by shaking
- Capacitors can be used for storing “information”
 - Charge up \(\rightarrow\) Check the voltage later
 - Computer memory chips (dynamic RAMs) contain arrays of microscopic capacitors
Where is the Energy

- When a capacitor is charged up, there is energy U in it
 - Exactly where?
 - A capacitor is empty inside
- All what’s inside is E field
 - Let’s assume the energy is uniformly distributed between the plates

Energy density $u = \frac{U}{Ad} = \frac{C(\Delta V)^2}{2Ad} = \frac{C(Ed)^2}{2Ad}$

$$u = \frac{1}{2} \varepsilon_0 E^2$$

Empty space with electric field E is filled with energy density $\frac{1}{2} \varepsilon_0 E^2$
Energy in the Field

- Empty space holding energy may sound strange
- Consider potential energy due to gravity

\[\text{This object has a potential energy } mgh \]

But how does it store the energy? The object itself does not change its properties!

- Potential energy is not in the object, but in its relationship with the gravitational field around it
- Gravitational field \(g \) (like \(E \) field) has energy density that is proportional to \(g^2 \)
- It’s just another way of looking at forces
Summary

- Defined capacitance $Q = C\Delta V$
 - For parallel-plate capacitor $C = \frac{\varepsilon_0 A}{d}$

- Capacitor arithmetic
 - Parallel or serial $\frac{1}{C_{\text{equiv.}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots + \frac{1}{C_n}$

- Energy stored in a charged capacitor
 - It’s in fact in the gap, where the energy density is $u = \frac{1}{2} \varepsilon_0 E^2$
 - $U = \frac{1}{2} C(\Delta V)^2$