Mechanics
Physics 151

Lecture 2
Elementary Principles
(Goldstein Chapter 1)

Administrivia

- First Problem Set
 - 3 problems for the section
 - Work on them before coming to your section!
 - 3 for the report (due next week)
- If you haven’t filled the Survey, please do it
 - We need it for sectioning and study-grouping
- Section time: Tue. 6 PM, 7 PM and Wed. 5 PM
 - If none of these slots works for you, let me know
 - Sectioning will be announced on Monday by email
 - We will also assign you into study groups (~6 each)

What We Did Last Time

- Reviewed basic principles of Newtonian Mechanics
 - Define standard notations and usages
 - Momenta, conservation laws, kinetic & potential energies
 - Concentrated on the motion of a single particle
Goals for Today

- Single \(\rightarrow\) multi-particle system
 - Force between particles
 - Laws of action and reaction (Newton's 3rd Law)
- Introduce constraints
 - Holonomic and nonholonomic constraints
- Introduce Lagrange's Equation

System of Particles

- More than one particles? \(\rightarrow\) Just add indices!
 \[\mathbf{F} = \mathbf{p} \quad \mathbf{N} = \mathbf{L} \]
- Subtlety: \(\mathbf{F}\) may be working between particles
 - Distinguish between internal and external forces

\[\mathbf{F} = \sum_{j} \mathbf{F}_j + \mathbf{F}^{\text{ext}} \]

- Force acting on particle \(i\)
- Force from particle \(j\)
- Force from outside
- Now add up over \(i\) to see the overall picture

Sum of Particles

\[\sum_{i,j} \mathbf{F}_{ij} + \sum_{i} \mathbf{F}^{\text{int}} = \sum_{i,j} (\mathbf{F}_j + \mathbf{F}_i) + \sum_{i} \mathbf{F}^{\text{ext}} \]

- This term vanishes if \(\mathbf{F}_j = -\mathbf{F}_i\)
 - Weak law of action and reaction

Forces two particle exert on each other are equal and opposite

\[\sum_{i} \mathbf{F}_i = \sum_{i} \mathbf{F}^{\text{int}} \]

C.f. the strong law of action and reaction

Forces two particle exert on each other are equal, opposite, and along the line joining the particles
Sum of Particles

- Now consider the equations of motion
 \[
 \sum F = \sum F^{(i)} = \sum \dot{p}_i = \sum \frac{d}{dt} \sum m_i r_i
 \]

- Define center of mass
 \[
 R = \sum \frac{m_i r_i}{m} = \sum \frac{m_r_i}{M}
 \]

\[
\text{MR} = \sum \dot{p}^{(i)} = \dot{F}^{(i)}
\]

Center of mass moves like a particle of mass \(M\) under total external force \(F^{(i)}\)

Total Linear Momentum

- The sum of the linear momenta is
 \[
 \mathbf{P} = \sum \dot{p}_i = \sum \frac{d}{dt} \sum m_i \mathbf{r}_i = \mathbf{MR}
 \]

- Taking the time derivative
 \[
 \dot{\mathbf{P}} = \frac{d}{dt} \mathbf{MR} = \dot{\mathbf{F}}^{(i)}
 \]

- Conservation of total linear momentum

 If the total external force \(F^{(i)}\) is zero, the total linear momentum \(\mathbf{P}\) is conserved.

 Assumed weak law of action & reaction

Total Angular Momentum

- The sum of the angular momenta is
 \[
 \mathbf{L} = \sum \mathbf{L}_i = \sum \mathbf{r}_i \times \dot{p}_i
 \]

- Take time derivative and use
 \[
 \dot{\mathbf{p}}_i = \mathbf{F}_i = \sum \mathbf{F}_j + \mathbf{F}^{(i)}
 \]

\[
\mathbf{L} = \sum \mathbf{r}_i \times \mathbf{F}_j + \sum \mathbf{r}_i \times \mathbf{F}^{(i)}
\]

- This term vanishes only if \(\mathbf{F}_j\) satisfies the strong law of action and reaction

Total external torque
Assuming strong law of action and reaction

\[L = \sum \mathbf{r} \times \mathbf{F} = \sum N^{\alpha} = N^{\alpha} \]

→ Conservation of total angular momentum

If the total external torque \(N^{\alpha} \) is zero, the total angular momentum \(L \) is conserved.

A multi-particle system (= extended object) can be treated as if it were a single particle if the internal forces obey the strong law of action and reaction.

Most forces we know obey strong law of action and reaction

- Gravity, electrostatic force

There are rare exceptions

- E.g. Lorenz force felt by moving charges
- Conservation of linear & angular momenta fails

Take into account the EM field

- Particles exchange forces with the field
- The field itself has linear & angular momenta

→ Conservation laws restored

We will see (in 2 lectures) that \(P \) and \(L \) must be conserved if the laws of physics are isotropic in space

- No special origin
- No special orientation

If we accept these symmetries as fundamental principles, all forces must satisfy the action-reaction laws → “Proof” of Newton’s 3rd Law.
Total Angular Momentum

- Define particle \(i \)'s position from the center of mass
 \[r'_i = r_i - R \]
- Also define the velocities \(v'_i = v_i \) \(v = R \)
- Calculate the total angular momentum
 \[L = \sum r'_i \times p_i = \sum (r_i + R) \times m (v_i + v) \]
 \[L = R \times M v + \sum r'_i \times m v'_i \]

Angular momentum of motion concentrated at the center of mass
Angular momentum of motion around the center of mass

Kinetic Energy

- The work done by force \(W_{ij} = \sum \int F \cdot ds \)
- Positions 1 and 2 are now configurations (sets of positions)
- Use equations of motion to derive
 \[W_{ij} = T_j - T_i \] where \(T = \sum \frac{1}{2} m v_i^2 \)
- One can split \(T \) into two pieces
 \[T = \sum \frac{1}{2} m (v + v') \cdot (v + v') = \frac{1}{2} M v^2 + \sum \frac{1}{2} m v_i^2 \]

Motion concentrated at the center of mass
Motion around the center of mass

Potential Energy

- Assume conservative external force \(F^{ext} = -\nabla V \)
 \[\sum_i \int F^{ext} \cdot ds = -\sum_i \int \nabla V_i \cdot ds = -\sum_i V_i \]
- Assume also conservative internal forces \(F_{ij} = -\nabla V \)
 - To satisfy strong law of action/reaction
 \[V_i = V_i(|r_i - r_j|) \] Potential depends only on the distance

\[\sum_{i,j} \int F_{ij} \cdot ds = -\sum_{i,j} \int \nabla V_i \cdot ds = -\frac{1}{2} \sum_i \nabla V_i \] Bit of work
\[-\frac{1}{2} \sum \nabla V_i^2 \]
Energy Conservation

- If all forces are conservative, one can define total potential energy:
 \[V = \sum_{i} V_i + \frac{1}{2} \sum_{i \neq j} V_{ij} \]
 - Then the total energy \(T + V \) is conserved
 - The second term is internal potential energy
 - It depends on the distances between all pairs of particles
 - Constant if particles' relative configuration is fixed
 \[\text{Rigid bodies} \]

Constraints

- Equation of motion \(m \ddot{r}_i = F_i = F_i^{(c)} + \sum_{j} F_{ij} \) assumes that particles can move anywhere in space
 - Not generally true
 - In fact never true – Free space is an idealization
 - Amusement-park ride constrained (hopefully) on a rail
 - Billiard balls on a pool table
 - How can we accommodate constraints in the equation of motion?
 - Depends on the type of the constraint

Holonomic Constraints

- Constraints may be expressed by
 \[f(\mathbf{r}_i, \mathbf{r}_j, \ldots, t) = 0 \]
 - A holonomic constraint
 - Particle on the x-y plane \(z = 0 \)
 - Rigid body \((\mathbf{r}_i - \mathbf{r}_j)^T \mathbf{c}_i = 0 \)
 - All other cases are called nonholonomic
 - It means “we don’t really want to mess with it”
 - May be inequalities such as \(z \geq 0 \)
 - May depend on derivatives such as \(\dot{r}_i \)
 - We will deal only with holonomic constraints
Independent Variables

- A holonomic constraint reduces the number of independent variables by 1
- If \(z = 0 \), you are left with only \(x \) and \(y \)
- You may be able to solve the constraint for one variable
 \[f(x, y, z, r_1, r_2, \ldots) = 0 \quad \Rightarrow \quad y = g(x, z, r_1, r_2, \ldots) \]
 - Then you can drop this variable
- You may have to switch to a different set of variables
- For a particle on a sphere \(x^2 + y^2 + z^2 = c^2 \) a good choice is \((\theta, \phi)\)
- New set of variables \(\Rightarrow \) Generalized coordinates

Generalized Coordinates

- \(N \) particles have \(3N \) degrees of freedom
- Introducing \(k \) holonomic constraints reduces it to \(3N - k \)
- Using generalized coordinates \(q_1, q_2, \ldots, q_{3N-k} \)

\[
\mathbf{r} = \mathbf{r}(q_1, q_2, \ldots, t)
\]

Transformation equations from \((r_i)\) to \((q_j)\)

- Example:
 \[
 \begin{align*}
 x &= c \sin \theta \cos \phi \\
 y &= c \sin \theta \sin \phi \\
 z &= c \cos \theta
 \end{align*}
 \]

Transformation from \((x, y, z)\) to \((\theta, \phi)\)

Now What?

- We know the equations of motion for \((r_i)\)
 \[
 m_\mathbf{a} = \mathbf{F} = \mathbf{F}_c + \sum \mathbf{F}_\ell
 \]
- We know how to include constraints by switching to generalized coordinates
 \[
 \mathbf{r} = \mathbf{r}(q_1, q_2, \ldots, t)
 \]
- How can we transform the equation of motion to the generalized coordinates?
 \[
 \text{Lagrange’s Equations}
 \]
Why Constraints?

- Constraint is an idealized classical concept
- Nothing is perfectly constrained in QM
- How useful is it to switch between coordinates?

Constraints and Force

- A holonomic constraint is an infinitely strong force
 - Or an infinitely high potential wall
- Reality is always smoother
 - E.g. electron of a hydrogen atom

<table>
<thead>
<tr>
<th>$V(r)$</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>free</td>
<td>constrained</td>
</tr>
</tbody>
</table>

It's still true that the electron feels strong radial (binding) force, while it can move freely around the nucleus.

Force and Symmetry

- Without forces, all coordinate systems are equal
 - x-y-z system is the simplest
- Forces break the symmetry
 - Some coordinate system works better than others
- Generalized coordinates offer natural way of handling systems with such forces
- Constraints are extreme cases
 - We develop our technique with them

OK, back to the business…
Lagrange’s Equations

Express \(L = T - V \) in terms of generalized coordinates \(\{q_i\} \), their time-derivatives \(\{\dot{q}_i\} \), and time \(t \)
- The potential \(V = V(q, t) \) must exist
- i.e. all forces must be conservative
- Let’s do a quick example to see how it works

Ex: Particle on a Line

A particle moving on the \(x \)-axis \(x = x(t), y = 0, z = 0 \)
- Kinetic and potential energies:
 \[T = \frac{m}{2} \dot{x}^2 \quad V = V(x) \]
 \[L = \frac{m}{2} \dot{x}^2 - V(x) \]
- Equivalent to Newton’s Eqn given that \(F_x = -\frac{\partial V}{\partial x} \)

OK, it works

Summary

- Discussed multi-particle systems
- Internal and external forces
 - Laws of action and reaction
 - Momenta, conservation laws, kinetic & potential energies
- Introduced constraints
 - Holonomic and nonholonomic constraints
 - Generalized coordinates
- Introduced Lagrange’s Equations
 - Next: Prove that Lagrange’s and Newton’s Equations are equivalent