Lecture 6
Kepler Problem
(Chapter 3)
What We Did Last Time

- Discussed energy conservation
 - Defined energy function $h \leftrightarrow$ Conserved if $\frac{\partial L}{\partial t} = 0$
 - Conditions for $h = E$

- Started discussing Central Force Problems
 - Reduced 2-body problem into central force problem

- Problem is reduced to one equation
 - Used angular momentum conservation
 - Energy conservation gives

$$E = \frac{m}{2} \dot{r}^2 + \frac{1}{2} \frac{l^2}{mr^2} + V(r) = \text{const}$$

- Now we must solve this

$$m\ddot{r} = \frac{l^2}{mr^3} + f(r)$$
Goals for Today

- Analyze qualitative behavior of central-force problem
 - Solutions: bounded or unbounded
 - Determined by the “shape” of the potential
- Solve the Kepler problem
 - Get the shape of the orbit
 - As if we don’t know yet…
 - Derive Kepler’s 3rd Law
 - Period of rotation is proportional to the $3/2$ power of the major axis
Qualitative Behavior

- Integrating the radial motion isn’t always easy
 - More often impossible…

- You can still tell general behavior by looking at

 \[\dot{r} = \sqrt{\frac{2}{m}} \left(E - V(r) - \frac{l^2}{2mr^2} \right) \]

 Quasi potential including the centrifugal force

- Energy \(E \) is conserved, and \(E - V' \) must be positive

 \[E = \frac{m\dot{r}^2}{2} + V'(r) \]
 \[\frac{m\dot{r}^2}{2} = E - V'(r) > 0 \]
 \[E > V'(r) \]

- Plot \(V'(r) \) and see how it intersects with \(E \)
Inverse-Square Force

- Consider an attractive $1/r^2$ force

 $f(r) = -\frac{k}{r^2}$ \quad $V(r) = -\frac{k}{r}$

- Gravity or electrostatic force

 $V'(r) = -\frac{k}{r} + \frac{l^2}{2mr^2}$

- $1/r^2$ force dominates at large r
- Centrifugal force dominates at small r
- A dip forms in the middle
Unbounded Motion

- Take V' similar to $1/r^2$ case
 - Only general features are relevant
- $E = E_1 \rightarrow r > r_{\text{min}} \quad E_1 = V'(r_{\text{min}})$
 - Particle can go infinitely far

Arrive from $r = \infty$

Turning point

$E = V' \quad \dot{r} = 0$

Go toward $r = \infty$

A $1/r^2$ force would make a hyperbola
Bounded Motion

\[E = E_2 \implies r_{\text{min}} < r < r_{\text{max}} \]

- Particle is confined between two circles

Goes back and forth between two radii

Orbit may or may not be closed. (This one isn’t)

A $1/r^2$ force would make an ellipse
Circular Motion

- $E = E_3 \rightarrow r = r_0$ (fixed)
 - Only one radius is allowed
 - Stays on a circle
 - $E = V'(r_0)$
 - $\dot{r} = 0$
 - $r = \text{const} = r_0$

- Classification into unbounded, bounded and circular motion depends on the general shape of V'
 - Not on the details ($1/r^2$ or otherwise)
Another Example

\[
V = -\frac{a}{r^3} \quad f = -\frac{3a}{r^4}
\]

\[
V' = -\frac{a}{r^3} + \frac{l^2}{2mr^2}
\]

- Attractive \(r^{-4} \) force
 - \(V' \) has a bump
 - Particle with energy \(E \) may be either bounded or unbounded, depending on the initial \(r \)
Stable Circular Orbit

- Circular orbit occurs at the bottom of a dip of V'
 \[
 \frac{m\dot{r}^2}{2} = E - V' = 0 \quad \text{and} \quad m\ddot{r} = -\frac{dV'}{dr} = 0
 \]
 \[r = \text{const}\]

- Top of a bump works in theory, but it is unstable
 - Initial condition must be exactly
 \[\dot{r} = 0 \quad \text{and} \quad r = r_0\]

Stable circular orbit requires \(\frac{d^2V'}{dr^2} > 0\)
Orbit Equation

- We have been trying to solve \(r = r(t) \) and \(\theta = \theta(t) \)
- We are now interested in the shape of the orbit \(r = r(\theta) \)
- Switch from \(dt \) to \(d\theta \)

\[
\dot{l} = m r^2 \dot{\theta}
\]

\[
\frac{d}{dt} = \frac{l}{m r^2} \frac{d}{d\theta}
\]

- Switch from \(r \) to \(u \equiv 1/r \)

\[
\frac{du}{d\theta} = \frac{d}{d\theta} \left(\frac{1}{r} \right) = -\frac{1}{r^2} \frac{dr}{d\theta}
\]

\[
\frac{d}{dr} = -u^2 \frac{d}{du}
\]
Solving this equation gives the shape of the orbit

- Not that it’s easy (How could it be?)
- Will do this for inverse-square force later

One more useful knowledge can be extracted without solving the equation

\[
\frac{d^2u}{d\theta^2} + u + \frac{m}{l^2} \frac{dV(\frac{1}{u})}{du} = 0
\]
Symmetry of Orbit

\[\frac{d^2u}{d\theta^2} + u + \frac{m}{l^2} \frac{dV}{du} \left(\frac{1}{u}\right) = 0 \]

- Equation is even, or symmetric, in \(\theta \)
 - Replacing \(\theta \) with \(-\theta\) does not change the equation
 - Solution \(u(\theta) \) must be symmetric if the initial condition is
 - Choosing \(\theta = 0 \) at \(t = 0 \), \(\theta \rightarrow -\theta \) makes

\[u(0) \rightarrow u(0) \quad \text{OK} \quad \frac{du}{d\theta}(0) \rightarrow -\frac{du}{d\theta}(0) \quad \text{OK if} \quad \frac{du}{d\theta}(0) = 0 \]

- Orbit is symmetric at angles where \(\frac{du}{d\theta} = 0 \)
Symmetry of Orbit

- Orbit is symmetric about every turning point = **apsidals**

 Orbit is invariant under reflection about apsidal vectors

 - That’s why I didn’t care too much about the sign of \dot{r}
 - Solve the orbit between a pair of apsidal points \rightarrow Entire orbit is known

- Now it’s time to solve the equation

$$\frac{du}{d\theta} = 0$$
Solving Orbit Equation

\[\frac{d^2 u}{d\theta^2} + u + \frac{m}{l^2} \frac{dV}{du} = 0 \]

- Integrating the diff eqn will give energy conservation
- One can use energy conservation to save effort

\[E = \frac{mr^2}{2} + \frac{l^2}{2mr^2} + V(r) \]

\[\dot{r} = \sqrt{\frac{2}{m} \left(E - \frac{l^2}{2mr^2} - V(r) \right)} \]

- Switch variables

\[\frac{du}{d\theta} = -\sqrt{\frac{2mE}{l^2} - u^2 - \frac{2mV}{l^2}} \]

Integrate this…
Inverse Square Force

- Look it up in a math textbook and find

\[
\int \frac{du}{\sqrt{\frac{2mE}{l^2} + \frac{2mku}{l^2} - u^2}} = -\int d\theta
\]

- Just substitute \(\alpha, \beta \) and \(\gamma \)
- Or…
\[\int d\theta = -\int \frac{du}{\sqrt{\frac{2mE}{l^2} + \frac{2mk}{l^2} - u^2}} = -\int \frac{du}{\sqrt{\frac{2mE}{l^2} + \frac{m^2k^2}{l^4} - \left(\frac{mk}{l^2} - u\right)^2}} \]

\[= -\frac{1}{\sqrt{\frac{2mE}{l^2} + \frac{m^2k^2}{l^4}}} \int \frac{du}{\sqrt{1 - \left(\frac{\frac{mk}{l^2} - u}{\sqrt{\frac{2mE}{l^2} + \frac{m^2k^2}{l^4}}}\right)^2}} \]

Define as \(\cos \omega \)

\[= -\int \frac{\sin \omega}{\sin \omega} d\omega = -\omega \]

\[du = \sqrt{\frac{2mE}{l^2} + \frac{m^2k^2}{l^4}} \sin \omega d\omega \]

\[\cos \omega = \cos(\theta - \theta') = \frac{\frac{mk}{l^2} - u}{\sqrt{\frac{2mE}{l^2} + \frac{m^2k^2}{l^4}}} \]

Solve this for \(u = 1/r \)
Solution

\[u = \frac{1}{r} = \frac{mk}{l^2} \left(1 + \sqrt{1 + \frac{2El^2}{mk^2}} \cos(\theta - \theta') \right) \]

- This matches the general equation of a conic

\[\frac{1}{r} = C \left(1 + e \cos(\theta - \theta') \right) \]

One focus is at the origin

- \(e \) is eccentricity

<table>
<thead>
<tr>
<th>(e)</th>
<th>(E)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e > 1)</td>
<td>(E > 0)</td>
<td>hyperbola</td>
</tr>
<tr>
<td>(e = 1)</td>
<td>(E = 0)</td>
<td>parabola</td>
</tr>
<tr>
<td>(e < 1)</td>
<td>(E < 0)</td>
<td>ellipse</td>
</tr>
<tr>
<td>(e = 0)</td>
<td>(E = -\frac{mk^2}{2l^2})</td>
<td>circle</td>
</tr>
</tbody>
</table>

Matches the qualitative classification of the orbits
Energy and Eccentricity

- $E = 0$ separates unbounded and bounded orbits
 - Borderline = Parabola
- Circular orbit requires
 $$V'(r_0) = -\frac{k}{r_0} + \frac{l^2}{2mr_0^2} = E$$
 $$\frac{dV'}{dr}\bigg|_{r_0} = \frac{k}{r_0^2} - \frac{l^2}{mr_0^3} = 0$$
 $$E = -\frac{mk^2}{2l^2}$$
Unbound Orbits

\[\frac{1}{r} = C \left(1 + e \cos(\theta - \theta')\right) \]

- \(e > 1 \rightarrow \text{hyperbola} \)
 - \(\theta' \) is the turning point (perihelion)
 - \(\cos(\theta - \theta') > -1/e \) limits \(\theta \)
- \(e = 1 \rightarrow \text{parabola} \)
Bound Orbits

- Ends of the major axis are \(\frac{1}{r} = C(1\pm e) \)

- Length of the major axis

\[
a = 2 \left(\frac{1}{C(1+e)} + \frac{1}{C(1-e)} \right) = -\frac{k}{2E}
\]

Major axis is given by the total energy \(E \)

- Minor axis is

\[
b = a\sqrt{1-e^2} = \sqrt{-\frac{l^2}{2mE}}
\]
Rotation Period

- We know that the areal velocity is constant

\[
\frac{dA}{dt} = \frac{1}{2} r^2 \dot{\theta} = \frac{l}{2m}
\]

- Express \(\tau \) in terms of \(a \)

\[
\tau = 2\pi \sqrt{\frac{m}{k} a^{3/2}}
\]

- Period of rotation is proportional to the 3/2 power of the major axis

Kepler’s Third Law of Planetary Motion

\[
a = -\frac{k}{2E} \quad b = \sqrt{-\frac{l^2}{2mE}}
\]

\[
A = \pi ab = \pi \sqrt{-\frac{l^2 k^2}{8mE^3}}
\]
Kepler’s Third Law

- Kepler’s third law is not exact
 - The reason: reduced mass
 - k is given by the gravity
 $$f = -G \frac{Mm}{r^2} = -\frac{k}{r^2}$$
 $$k = GMm$$
 - Period of rotation becomes
 $$\tau = 2\pi \sqrt{\frac{\mu}{k}} a^{3/2} = 2\pi \sqrt{\frac{1}{G(M + m)}} a^{3/2}$$
 - Coefficient is same for all planets only if $M >> m$
So far we dealt with the shape of the orbit: $r = r(\theta)$

- We don’t have the full solutions $r = r(t)$ and $\theta = \theta(t)$

Why aren’t we doing it?

- It’s awfully complicated
 - Not that bad to get $t = t(\theta)$ \(\Rightarrow\) See Goldstein Section 3.8
 - Inverting to $\theta = \theta(t)$ impossible
 - Physicists spent *centuries* calculating approximate solutions
 - Already got physically interesting features of the solution

Leave it to the computers
Summary

- Studied qualitative behavior of the orbits
 - Bounded or unbounded ↔ Shape of $V'(r) \equiv V(r) + \frac{l^2}{2mr^2}$
- Derived orbit equation from the eqn of radial motion
 - r (or $u = 1/r$) as a function of θ
- Analyzed the Kepler Problem
 - Solved the orbit
 - Conic depending on E
 - For elliptic orbit, major axis depends only on E
 - Kepler’s third law of planetary motion

$$\frac{1}{r} = \frac{mk}{l^2} \left(1 + \sqrt{1 + \frac{2El^2}{mk^2}} \cos(\theta - \theta')\right)$$

$$a = -\frac{k}{2E}$$