What We Did Last Time

- Found the velocity due to rotation
 \[\frac{d}{dt} \mathbf{v} = \frac{d}{dt} \mathbf{r} + \omega \times \mathbf{r} \]
- Used it to find the Coriolis effect
- Connected \(\omega \) with the Euler angles
- Lagrangian \rightarrow\ translational and rotational parts
 Often possible if body axes are defined from the CoM
- Defined the inertia tensor
- Calculated angular momentum and kinetic energy
 \[I = I_0 \quad T = \frac{1}{2} \omega \cdot I \cdot \omega \]

Diagonalizing Inertia Tensor

- Inertia tensor \(I \) can be made diagonal
 \[I = \mathbf{R} \mathbf{I}_0 \mathbf{R}^T \]
 \(\mathbf{R} \) is a rotation matrix

- Kinematical properties of a rigid body are fully described by its mass, principal axes, and moments of inertia
Principal Axes

- Consider a rigid body with body axes \(x\,-\,y\,-\,z \)
 - Inertia tensor \(I \) is (in general) not diagonal
 - But it can be made diagonal by \(I_{\text{new}} = RIR \)
- Rotate \(x\,-\,y\,-\,z \) by \(R \Rightarrow \) New body axes \(x'\,-\,y'\,-\,z' \)
 - In \(x'\,-\,y'\,-\,z' \) coordinates
 \[\dot{\omega} = R\dot{\omega} \]
 \[\ddot{L} = RL \]
 \[= RIR \]
 \[= RRR\omega \]
 \[= I_{\text{new}} \omega' \]

One can choose a set of body axes that make the inertia tensor diagonal

→ Principal Axes

Finding Principal Axes

- Consider unit vectors \(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3 \) along principal axes
 \[\mathbf{n}_i = I\mathbf{n}_i \] \(\mathbf{n}_i \) is an eigenvector of \(I \) with eigenvalue \(I_i \)
- To find the principal axes and principal moments:
 - Express \(I \) in any body coordinates
 - Solve eigenvalue equation
 \[(I - \lambda I) = 0 \]
 \[= \lambda = I_1, I_2, I_3 \]
 - Eigenvectors point the principal axes
 - Use them to re-define the body coordinates to simplify \(I \)
 - You can often find the principal axes by just looking at the object

Rotational Equation of Motion

- Concentrate on the rotational motion
 \[\frac{d}{dt} L = \frac{d}{dt} (\mathbf{I}) \mathbf{\omega} + \mathbf{\omega} \times L = N \]
 \[\text{“space” axes} \]
 \[\text{“body” axes} \]
- Take the principal axes as the body axes
 \[L = I\omega = \begin{bmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{bmatrix} \mathbf{\omega} = \begin{bmatrix} I_1\omega_1 \\ I_2\omega_2 \\ I_3\omega_3 \end{bmatrix} \]
Euler’s Equation of Motion

\[
\frac{d}{dt} \begin{bmatrix}
I_1 \omega_1 \\
I_2 \omega_2 \\
I_3 \omega_3
\end{bmatrix} + \begin{bmatrix}
\omega_1 \\
\omega_2 \\
\omega_3
\end{bmatrix} \times \begin{bmatrix}
I_1 \omega_1 \\
I_2 \omega_2 \\
I_3 \omega_3
\end{bmatrix} = \begin{bmatrix}
N_1 \\
N_2 \\
N_3
\end{bmatrix}
\]

Euler’s equation of motion for rigid body with one point fixed

- Special cases:
 - \(\omega_3 = 0 \) \(\Rightarrow \) \(I_3 \omega_3 = N_3 \)
 - \(I_1 = I_2 \) \(\Rightarrow \) \(I_3 \omega_3 = N_3 \)

Torque-Free Motion

- No linear force \(\Rightarrow \) Conservation of linear momentum
- No torque \(\Rightarrow \) Conservation of angular momentum
- Try \(\mathbf{N} = 0 \) in Euler’s equation of motion

\[
\begin{align*}
I_1 \omega_1 - \omega_3 \omega_3 (I_1 - I_3) &= 0 \\
I_2 \omega_2 - \omega_3 \omega_3 (I_2 - I_3) &= 0 \\
I_3 \omega_3 - \omega_3 \omega_3 (I_3 - I_1) &= 0
\end{align*}
\]

Integrating these equation will give us energy and angular momentum conservation

- We will do something more intuitive (hopefully)
 - Geometrical trick by L. Poinsot

Inertia Ellipsoid

- For any direction \(\mathbf{n} \), \(I = \mathbf{n} \cdot \mathbf{n} I \)
 - If we express \(\mathbf{n} \) using principal axes \(x'-y'-z' \)

\[
I = I_{x'} = I_{y'} + I_{z'} + I_{x''}
\]

- Consider a vector \(\rho = \frac{\mathbf{n}}{\sqrt{I}} \)

\[
1 = I_{x'} \rho_x^2 = I_{y'} \rho_y^2 + I_{z'} \rho_z^2 + I_{x''} \rho_{x''}^2
\]

Inertia ellipsoid
Inertia Ellipsoid

\[\rho = \frac{n}{\sqrt{I}} \]

Inertia ellipsoid represents the moment of inertia of a rigid body in all directions.

Usefulness of this definition will become apparent soon.

Inertia Ellipsoid

- Inertia along axis \(n \) is \(I = \textbf{n} \cdot \rho \textbf{n} \)
- \(F(\rho) = \rho \cdot L = I_1 \rho_1^2 + I_2 \rho_2^2 + I_3 \rho_3^2 = 1 \)
- \(F \) is a function (like potential) defined in the \(\rho \) space
 - \(F(\rho) = 1 \) \(\rightarrow \) Inertia ellipsoid
 - Normal of the ellipsoid given by the gradient
 \[\nabla F = 2L \rho \]
 - Using \(\rho = \frac{n}{\sqrt{I}} = \frac{\omega}{\sqrt{2T}} \)
 \[\nabla F = \frac{\omega}{\sqrt{2T}} L \]
 Surface of the inertia ellipsoid is perpendicular to \(L \).

Invariable Plane

- Surface of inertia ellipsoid at \(\rho \) is perpendicular to the angular momentum \(L \)
- As \(\rho \) moves, inertia ellipsoid must rotate to satisfy this condition continuously
- Consider the projection of \(\rho \) on \(L \)
 \[\frac{\rho \cdot L}{L} = \frac{\omega L}{L} = \frac{\sqrt{2T}}{L} \]
 \[\text{constant} \]
 - The ellipsoid is touching a fixed plane perpendicular to \(L \)
 - Invariable plane

\(L \) is conserved.

\[\nabla F = \frac{\omega}{\sqrt{2T}} L \]
Invariable Plane

- Inertia ellipsoid touches the invariable plane.
 - Distance between the center and the plane is $\sqrt{\frac{1}{\mathbf{T}}}$.
 - Determined by the initial conditions.

- Touching point = instantaneous axis of rotation.
 - Tip of the \mathbf{p} vector is momentarily at rest in space.
 - $\frac{d\mathbf{p}}{dt} = \mathbf{\omega} \times \mathbf{p} = \mathbf{\omega} \times \mathbf{\omega} = 0$
 - i.e. it’s not sliding, but rolling without slipping on the invariable plane.

= Invariable Plane

- Inertia ellipsoid rolls on the invariable plane.
 - Rotation of ellipsoid gives the rotation of the body.
 - Direction of \mathbf{p} gives the direction of $\mathbf{\omega}$ in space.

- Touching point draws curves.
 - Curve drawn on the ellipsoid = polhode.
 - Curve drawn on the invariable plane = herpolhode.

- Let’s examine a few simple cases.

Simple Cases

- Inertia ellipsoid is a sphere ($I_1 = I_2 = I_3$).
 - \mathbf{p} is constant and parallel to \mathbf{L}.
 - Stable rotation.
Simple Cases

- Initial axis is close to one of the principal axes
 - Assume $I_1 > I_2 > I_3$
 - Stable rotation around I_1 and I_3
 - Not so obvious around I_2
 - If $\omega_1 = \omega_3 = 0$, ω_2 is constant
 - Small deviation leads to instability

Simple Cases

- Since $I_1 > I_2 > I_3$, distance $\sqrt[3]{I_1}$ allows a polhode that wraps around the inertia ellipsoid.
 - Rotation around a principal axis is stable except for the one with the intermediate moment of inertia.

Simple Cases

- Inertia ellipsoid is symmetric around one axis
 - $I_1 = I_2 = I_3$
 - ρ draws a cone (space cone) on the invariable plane
 - ρ draws a cone (body cone) in the inertia ellipsoid
 - Body cone rolls on the space cone
Precession

- $I_1 = I_2$ turns the Euler’s equation of motion to

$$I \omega = \alpha \omega, (I_1 - I_3)$$

$\omega = \Omega \Omega, \quad \omega = \Omega \omega$

$\Omega = \frac{I_3}{I_1 - I_3}$

ω is constant
- Consider it as a given initial condition

- ω precesses around the I_3 axis
- Draws the body cone

Rotation Under Torque

- We introduce torque
- Things get messy
- Consider a spinning top
- Define Euler angles

Lagrangian

- Assume $I_1 = I_2 \neq I_3$
- Kinetic energy given by
- Use Euler angles

$$T = \frac{1}{2} I_1 (\dot{\alpha_1}^2 + \dot{\alpha_3}^2) + \frac{1}{2} I_3 \dot{\alpha_3}^2$$

$$\omega = \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$

$$T = \frac{L_1}{2} (\dot{\phi}^2 + \dot{\theta}^2 + \dot{\psi}^2) + \frac{L_2}{2} (\dot{\theta} \cos \phi + \dot{\psi} \sin \phi)^2$$
Lagrangian

- Potential energy is given by the height of the CoM
 \[V = Mgl \cos \theta \]
- Lagrangian is
 \[L = \frac{I_{1}}{2} (\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{I_{2}}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2 - Mgl \cos \theta \]
- Finally we are in real business!
- How we solve this?
 - Note \(\phi \) and \(\psi \) are cyclic
 - Can define conjugate momenta that conserve
- To be continued …

Summary

- Discussed rotational motion of rigid bodies
 - Euler’s equation of motion
- Analyzed torque-free rotation
 - Introduced the inertia ellipsoid
 - It rolls on the invariant plane
 - Dealt with simple cases
- Started discussing heavy top
 - Found Lagrangian \(\rightarrow \) Will solve this next time
 \[L = \frac{I_{1}}{2} (\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{I_{2}}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2 - Mgl \cos \theta \]