Mechanics
Physics 151

Lecture 11
Rigid Body Motion
(Chapter 5)

Administrivia

- Please fill out the midterm evaluation form
- Critical feedback for me
 - to evaluate how well (or badly) I’m teaching
 - to adjust the level of the course according to your needs
 - to receive your suggestions for improvements
- Be critical, and be specific
 - I can’t fix them if you don’t tell me what’s wrong
 - It’s anonymous and confidential
- Thank you!

What We Did Last Time

- Discussed rotational motion of rigid bodies
 - Euler’s equation of motion
- Analyzed torque-free rotation
 - Introduced the inertia ellipsoid
 - It rolls on the invariant plane
 - Deal with simple cases
- Started discussing heavy top
 - Found Lagrangian \(\mathcal{L}\) Analyze it today
 \[
 \mathcal{L} = \frac{I_1}{2}(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{I_1}{2}(\phi \cos \theta + \dot{\psi})^2 - Mg\ell \cos \theta
 \]
Heavy Top

- Top is spinning on a fixed point
- Lagrangian is
 \[L = \frac{I}{2} (\dot{\phi}^2 + \phi^2 \sin^2 \theta) + \frac{I_1}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2 - Mgl \cos \theta \]
- \(\phi \) and \(\psi \) are cyclic
- Symmetry
- \(p_\phi \) and \(p_\psi \) are conserved

![Diagram of a heavy top](image)

Conserved Momenta

\[L = \frac{I}{2} (\dot{\phi}^2 + \phi^2 \sin^2 \theta) + \frac{I_1}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2 - Mgl \cos \theta \]

\[p_\phi = \frac{dL}{d\dot{\phi}} = I_1 (\dot{\phi} \cos \theta + \dot{\psi}) = I_\phi = \text{const.} = I \]

\[p_\psi = \frac{dL}{d\dot{\psi}} = I_1 \dot{\psi} + I_\psi = \text{const.} = I \]

- Solve them for \(\dot{\phi} \) and \(\dot{\psi} \)
- \(\dot{\phi} = \frac{b-a \cos \theta}{\sin \theta} \)
- \(\dot{\psi} = \frac{I_\psi}{I_1} - \frac{b-a \cos \theta}{\sin \theta} \)

- We need \(\dot{\theta}(t) \) to get \(\dot{\phi}(t) \) and \(\dot{\psi}(t) \)

Got rid of 2 degrees of freedom

Energy Conservation

\[E = \frac{I}{2} (\dot{\phi}^2 + \phi^2 \sin^2 \theta) + \frac{I_1}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2 + Mgl \cos \theta \]

- Middle term is \(\frac{1}{2} I \dot{\theta}^2 \)
- \(E' = E - \frac{1}{2} I \dot{\theta}^2 - \frac{1}{2} I_1 (b-a \cos \theta)^2 + Mgl \cos \theta \)

- We’ve got a 1-dim equation of motion of \(\theta \)
 - It looks like a particle of “mass” \(I_1 \)
 under a potential
 \[V(\theta) = \frac{I_1}{2} \left(\frac{b-a \cos \theta}{\sin \theta} \right)^2 + Mgl \cos \theta \]
1-D Equation of Motion

- Simplify the equation of motion by defining
 \[\alpha = \frac{2E - I_1 a^2}{I_1} \quad \text{and} \quad \beta = \frac{2MgI_1}{I_1} \]

 \[\text{EqM becomes} \quad \alpha = \dot{\theta}^2 + \left(\frac{b - a \cos \theta}{\sin \theta} \right)^2 + \beta \cos \theta \]

- Switch variable from \(\theta \) to \(u = \cos \theta \)

 \[\text{EqM} \quad \ddot{u} = (1 - u^2)(\alpha - \beta u) - (b - au)^2 \]

- Integrate
 \[t = \int_{u_1}^{u_2} \frac{du}{\sqrt{(1 - u^2)(\alpha - \beta u) - (b - au)^2}} \]

 Elliptic integral

Qualitative Behavior

- Try to extract qualitative behavior
 - Same way as we did with central force problem
 - Consider the RHS of the last equation
 \[\ddot{u} = f(u) = (1 - u^2)(\alpha - \beta u) - (b - au)^2 \]
 \[= \beta u^2 - (\alpha + a^2)u + (2ab - \beta)u + (\alpha - b^2) \]

 - Physical range is \(f(u) = \ddot{u} \geq 0 \) and \(-1 \leq u \leq 1\)

 - \(f(u) \) is a cubic function of \(u \) with \(\beta = \frac{2Ma}{I_1} > 0 \)

 \[f(\pm 1) = -(b - au)^2 \leq 0 \]

 These conditions constrain the shape of \(f(u) \)

Shape of \(f(u) \)

- \(f(u) = 0 \) has 3 roots \(-1 \leq u_1 < u_2 \leq 1\)
 - Solution for \(\ddot{u} = f(u) \) is bounded inside \(u_1 \leq u \leq u_2 \)

- \(\theta \) oscillates between \(\arccos(u_1) \) and \(\arccos(u_2) \)

 - \(\phi \) and \(\psi \) determined by
 \[\phi = \frac{b - a \cos \theta}{\sin^2 \theta} \]
 \[\psi = \frac{1, a - \cos \theta}{\sin \theta} \frac{b - a \cos \theta}{\sin \theta} \]
Nutation

Consider the sign of \[\dot{\theta} = \frac{b - a \cos \theta}{\sin \theta} \frac{b - au}{1 - u'} \]
- \(u' < u_1 \) or \(u' > u_2 \)
- \(\dot{\theta} = u' = b/a \) is monotonous
- \(u_1 < u' < u_2 \)
- \(\dot{\theta} \) switches direction

Initial Condition

Suppose the figure axis is initially at rest
- Spin the top, then release it “quietly”
- \(\theta_{ix} = 0 \) or \(u_{ix} = u_1 \) or \(u_2 \)
- \(\phi_{ix} = 0 \) or \(b - au_{ix} = 0 \) or \(u_{ix} = u' \)

Initially, the figure axis falls
- It then picks up precession in \(\phi \)
- How does it know which way to go?

Origin of Precession

Angular momentum conservation

\[p_\phi = \frac{\partial L}{\partial \phi} = I \dot{\phi} \]
\[p_\theta = \frac{\partial L}{\partial \theta} = I \dot{\phi} \sin^2 \theta + I \dot{\phi} \cos \theta \]
- \(\phi_0 \) is constant
- As the figure axis falls, \(\phi_0 \)'s contribution to \(p_\phi \) decreases
- \(\phi \) must start precessing to make up for it
- Direction of precession is same as that of spin
Uniform Precession

- Can we make a top precess without bobbing?
 - i.e., $\dot{\theta} = 0, \dot{\phi} = \text{const}$
 - We need to have a double root for $f(u) = 0$

 \[
 f(u) = (1-u^2)(\alpha - \beta u) - (b-\alpha u) = 0
 \]

 \[
 f'(u) = -2\alpha u - \beta (1-u^2) - \beta (1- u^2) + 2\alpha (b-\alpha u) = 0
 \]

 Combine $\beta = a\phi - \dot{\phi} u$

- For any given value of ω and $\cos \theta_0$, you must give exactly the right “push” in ϕ to achieve uniform precession

- Quadratic equation \Rightarrow 2 solutions
 - Same top can do “fast” or “slow” precession
 - For the solutions to exist

 \[
 \omega_0 > \frac{2}{I_1} \sqrt{MgL \cos \theta_0}
 \]

- Uniform precession is achieved only by a fast top

Magnetic Dipole Moment

- Consider a rigid body made of charged particles
 - Mass m_i, charge q_i, position r_i, velocity v_i
 - If there is uniform magnetic field B

 - Each particle feels force $F_i = q_i v_i \times B$
 - If CoM is at rest and $q/m_i = \text{const}$

 $F = q \times B = \frac{q}{m} m_i v_i \times B = 0$

 No net force

- How about the torque?

 \[
 N = \mathbf{r} \times F = q \mathbf{r} \times (v \times B) = \frac{q}{m} m_i \mathbf{r} \times (v \times B)
 \]
Magnetic Dipole Moment

- Using \(\mathbf{V}_i = \mathbf{\omega} \times \mathbf{r} \)

\[
N = \frac{q}{m} m \mathbf{r} \times (\mathbf{v} \times \mathbf{B}) = \frac{q}{m} m (\mathbf{\omega} \times \mathbf{r}) (\mathbf{r} \cdot \mathbf{B})
\]

- Explicit calculation using polar coordinates

\[
(\mathbf{\omega} \times \mathbf{r}) (\mathbf{r} \cdot \mathbf{B}) = \omega \varepsilon^2 B \sin \theta \begin{bmatrix} -\sin \phi \\ \cos \phi \\ 0 \end{bmatrix} (\sin \theta \cos \phi \sin \Theta + \cos \theta \cos \Theta)
\]

- Take time average → Assume rotation is fast

\[
\mathbf{N} = \frac{q}{2m} m (\mathbf{r} \cdot \mathbf{r} \sin \Theta) \mathbf{\omega} \times \mathbf{B} = \frac{q}{2m} \mathbf{L} \times \mathbf{B}
\]

Magnetic Dipole Moment

- Magnetic dipole \(\mathbf{M} \) in \(\mathbf{B} \) feels the torque \(\mathbf{N} = \mathbf{M} \times \mathbf{B} \)

- Fast spinning charged rigid body has a magnetic moment \(\mathbf{M} = \gamma \mathbf{L} \)

\[
\gamma = \frac{q}{2m}
\]

- Gyromagnetic ratio

- Equation of motion \(\frac{d\mathbf{L}}{dt} = \gamma \mathbf{L} \times \mathbf{B} \)

- This makes \(\mathbf{L} \) to precess around \(\mathbf{B} \)

- Angular velocity of precession is \(\omega_{\text{precess}} = -\gamma B = -\frac{q}{2m} B \)

Elementary Particles

- Particles such as electrons or protons have
 - Spin, or intrinsic angular momentum, \(\mathbf{s} \)
 - Magnetic moment \(\mathbf{\mu} \)

- Dirac equation for a spin-1/2 particle predict \(\mathbf{\mu} = \frac{q}{m} \mathbf{s} \)

- Differs from classical charged object by factor 2

- Particle physicists say \(\mathbf{\mu} = g \frac{q}{2m} \mathbf{s} \) \(g = 1 \) classical object \(g = 2 \) Dirac particle

- \(g = 2.8 \) for proton, –1.9 for neutron \(g \) composite particles
Anomalous Magnetic Moment

- μ of electron and muon known very accurately
 - $\mu_{\text{electron}} = 2.002319304374 \pm 0.000000000008$
 - $\mu_{\text{muon}} = 2.002331832 \pm 0.0000000012$
- Not pure Dirac particles, but surrounded by thin cloud of virtual particles due to quantum fluctuation
- Measurement uses spin precession
 - Store particles with known spin orientation in B field
 - Measure spin direction after time t

\[\omega \text{precess} = -\frac{e\gamma}{2m} B \]

Need to know B very accurately

Muon g–2 Experiment

- Muon g–2 Experiment
 - BNL E-821 muon storage ring
 - $\mu_{\text{muon}} = 2.0023318404 \pm 0.0000000030$

Summary

- Analyzed the motion of a heavy top
 - Reduced into 1-dimensional problem of θ
 - Qualitative behavior \Rightarrow Precession + nutation
 - Initial condition vs. behavior
- Magnetic dipole moment of spinning charged object
 - $M = \gamma L$, where $\gamma = q/2m$ is the gyromagnetic ratio
 - L precesses in magnetic field by $\omega = -\gamma B$
- γ of elementary particles contains interesting physics
- Done with rigid bodies
 - Next: Oscillation