Lecture 15
Special Relativity
(Chapter 7)

What We Did Last Time
- Defined Lorentz transformation
 - Linear transformation of 4-vectors that conserve the length in Minkowski space
- Derived general form of homogeneous Lorentz transformation
 - Product of rotation and proper Lorentz transformation
 - Found explicit matrix expression of PLT
 - HLTs form a group, PLTs don’t
 - $\text{HLT} \times \text{HLT} = \text{HLT}$
 - $\text{PLT} \times \text{PLT} = \text{HLT}$

Fun With Paradox
- In general, two PLTs don’t add up to a PLT
 - Rotation becomes involved
- Example: two objects are moving in parallel
 - Can you see where the rotation come from?
Fun With Paradox

- How do you know two objects passed the line “simultaneously”?
 - By sending light and receiving reflection

Light is sent at $t = \frac{l}{c}$
Reflections come back at $t = \frac{l}{c}$

Took same time ↭ same distance
Came back simultaneously ↭ reflected at the same time

- What happens if the observer was moving?

Fun With Paradox

- For a moving observer

Light is sent at the same moment
Reflection from A comes back earlier than from B
⇒ A must have passed earlier!

Definition of “simultaneous” depends on the observer
- Causing this effect

What We Did Last Time

- Discussed Lorentz transformation
 - Linear transformation of 4-vectors that conserve the length in Minkowski space

- Derived general form of homogeneous Lorentz transformation
 - Product of rotation and proper Lorentz transformation
 - Found explicit matrix expression of PLT
 - HLTs form a group, PLTs don’t

- We got the stage = spacetime
 - Let’s get the actors = physical quantities
4-Vectors

- We write 4-vectors as x^{μ}.
 - Greek index = $0 \ldots 3$
 - $x^{0} = ct$
 - $x^{1} = x$
 - $x^{2} = y$
 - $x^{3} = z$
- It seems confusing, but you’ll get used to it.
- Let’s follow a particle traveling in 4-space.
 - Trajectory is given by $x^{\mu}(\lambda)$, $x^{\lambda}(\lambda)$.
 - λ is a parameter that varies monotonously along the curve.
 - Proper time τ is a convenient possibility for λ.
- At any point on the curve, we can define a tangent 4-vector.

\[\mu^{\tau} = \frac{d \lambda}{d \tau} \]

Call it 4-velocity.

4-Velocity

- S is observer’s frame. S' is the particle’s rest frame.
- Particle’s 3-velocity in S is v.
 - $x^{0} = ct = \gamma vt$
 - $x^{1} = x = \gamma v' ct = \gamma v' t$
- We define 4-velocity.

\[u^{\mu} = \frac{\partial x^{\mu}}{\partial \tau} = \gamma v^{\mu} \]

- “Length” is $u^{\mu}u_{\mu} - u'^{\mu}u'^{\mu} = \gamma v^{\mu}v_{\mu} = c^{2}$.
- 4-velocity is the relativistic extension of v.

4-Momentum

- Multiplying 4-velocity with mass gives 4-momentum.
 - $p^{0} = mu^{0} = myc$
 - $p^{i} = mu^{i} = myv^{i}$
- Space part is natural extension of 3-momentum $p = myv$.
- Time part is energy $E = c^{2} = myc$.
 - This needs to be confirmed after introducing force.
- Lorentz invariance is obvious.
 - $p^{i}p_{i} - p'^{i}p'^{i} = m^{2}c^{2}$
- Kinetic energy is defined as

\[T = E - E_{mc} = \sqrt{m^{2}c^{4} + p^{2}c^{2}} - mc^{2} \]
Lorentz Tensor

- Proper Lorentz transformation turns a 4-vector into another 4-vector
 - Consider it a linear function of 4-vector
 - Express it as $L^\mu_\nu x^\nu = x'^\mu$
 - Upper index = 4-vector
 - Lower index = function that accepts 4-vector
 - You can define a whole bunch of quantities using this convention ➔ Call them **tensors**
 - $X, X^\mu, X_{\mu}, X_{\mu\nu}, X^{\mu\nu}$
 - We’ll find their physical meanings as we go

Tensor Product

- Tensor product of two 4-vectors is defined by $T^{\alpha\beta} \equiv x^\alpha y^\beta$
 - Write this $T \equiv \otimes$
 - $T^{\alpha\beta}$ is a tensor of rank 2
 - You can repeat this to define tensors of rank n
 - Lorentz transformation of $T^{\alpha\beta}$ can be easily found
 - $T'^{\alpha\beta} = u^\alpha v^\beta = L^\mu_\alpha L^\nu_\beta g_{\mu\nu} = L^\mu_\alpha L^\nu_\beta T^{\alpha\beta}$
 - Use as many Lorentz tensor as necessary to convert all indices

Scalar Product

- We define the scalar product of two 4-vectors $u \cdot v = u^\mu v^\mu$
 - Two lower indices because it takes two 4-vectors and returns a scalar
 - How does it transform?
 - $u' \cdot v' = u'^\mu g_{\mu\nu} v'^\nu = u^\mu L^\mu_\alpha L^\nu_\beta g_{\mu\nu} = u^\mu v^\mu = u \cdot v$
 - Scalar product is Lorentz invariant, as expected
Metric Tensor

- A coordinate system in general has basis vectors
 \[u = u^i e_i = u^i e_e + u^i e_e + u^i e_3 + u^i e_4 \]
- Scalar product \(u \cdot v \) can be written as
 \[u \cdot v = u^i e_i \cdot v^k e_k \]
 \[g_{ij} = e_i \cdot e_j \]

Metric tensor defines the scalar products of the basis vectors
- Lengths of and angles between the basis vectors
- That’s what “metric” means

General Metric Tensor

- Metric \(g_{\mu\nu} \) in Minkowski space is diagonal
 - Coordinate axes are always orthogonal
- Formalism of tensors allows more flexibility
 - Useful in curved space coordinates
 - General relativity makes full use of this
 - Let’s not get into it for now…

1-Form

- Let’s look at a scalar product in a different way
 \[u \cdot v = u^\nu g_{\nu\mu} \]
 \(u \Rightarrow \text{4-vector} \)

- We call \(u_i = u^\nu g_{\nu i} \) as the 1-form of \(u^\nu \)
 \(x_i = x^i = ct \)
 \(x_i = -x^i \)

- Difference between 4-vector and 1-form seems small
 - Why do we make such distinction?
 - non-Minkowski metric can make them really different
 - There are physical quantities that are naturally 1-form
Gradient

Consider a scalar function \(f(x^\mu) \)
- A particle goes along a curve \(x^\mu = x^\mu(t) \)
- Rate of increase of \(f(x^\mu(t)) \) is given by
 \[
 \frac{df}{dt} = \frac{df}{dx^\mu} x^\mu \partial_{\mu}
 \]
- Gradient operates on velocity to make a scalar \(\rightarrow 1\)-form
- Gradient operator is defined by \(\partial_\mu \)
 - Also known as \(\text{d} \)
 - But I’ll avoid this notation
 - Lower index shows it’s a 1-form

4-Vector and 1-Form

- 4-vector can be turned into its 1-form by \(u^\mu = u^\mu g_{\mu \nu} \)
 - Obviously you can do the reverse \(u^\mu = g^{\alpha \beta} u_\alpha \)
 where \(g^{\alpha \beta} g_{\beta \gamma} = \delta^\alpha_\gamma \)
 - \(g^{\alpha \beta} \) looks identical to \(g_{\mu \nu} \) in Minkowski space
- This gives us Lorentz transformation for 1-form
 \[
 n^\nu = g^{\alpha \beta} n_\alpha L_{\alpha \beta} u^\beta = g^{\alpha \beta} n_\alpha L_{\alpha \beta} u^\beta = L_{\alpha} u^\alpha \]
 - Works just the same as 4-vector, as it should

Rank of Tensors

- A general tensor has \(n \) upper and \(p \) lower indices
 - Call it a tensor of rank \(\left(\begin{array}{c} n \\ p \end{array} \right) \)
 - It takes \(p \) 4-vectors and \(n \) 1-forms and return a scalar
 \(T^\alpha a_b c = \) scalar
 - 4-vector and its 1-form are interchangeable using \(g_{\mu \nu} \)
 - We can turn a tensor into equivalent tensors with different rank, as long as \(n + p \) is conserved
 - Example:
 \[
 T^\alpha a_b c = T^\alpha (g_{\alpha \beta}) b c \Rightarrow T^\alpha = T^\alpha g_{\alpha \beta}
 \]
Lorentz Transformation

- We can find Lorentz transformation for any tensor
 - Transform all indices using Lorentz tensor
 - Example:
 \[T_\alpha^\nu a_\beta b_\mu = \text{scalar} \]
 Transform this to get
 \[T_\alpha^\nu a_\beta b_\mu = T_\alpha^\nu L_\alpha^\gamma L_\beta^\delta L_\mu^\rho L_\nu^\sigma \]
 - We now know all the rules for
 - Lorentz transformation
 - Moving indices up and down
 - They aren’t even all that complicated

Force

- Newton’s laws must be correct if the velocity is zero
 - \[F = \frac{dp}{dt} \] in the rest frame of the object
 - Momentum transforms as a 4-vector
 - Time dilation changes the time derivative
 - Natural extension would be
 \[\frac{dp}{d\tau} = K^\nu \]
 - \(K^\nu \) must be a 4-vector
 - \(\tau \) is proper time. Connected with \(t \) by \(dt = \gamma d\tau \)
 - How do we find the 4-force \(K^\nu \)?

Electromagnetic Force

- We assume Maxwell’s equations are always correct
 - Predicts constant speed of light \(c \)
 - We want to rewrite it in a covariant form
 - EM force on a charged particle can be derived from the generalized potential \(U = e(\phi - A \cdot v) \)
 - 4-velocity \(u_\mu \) was \((u_\mu, u) = (v_x, v_y) \)
 - Define 4-potential as \(A = (A, A) = (\phi/c, A) \)
 - Scalar product is
 \[A^\mu u_\mu = \frac{\phi}{c} v_x - A_y v_y = \gamma (\phi - A \cdot v) \]
 - New \(\gamma U = eA^\mu u_\mu \) looks promising
Electromagnetic Force

- $U = \epsilon(A' u_\mu)$ is a scalar if $A' = (\phi, cA)$ is a 4-vector
 - What we are looking for if the laws of EM are covariant
- Force in 3-d is given by $F_i = -\frac{\partial U}{\partial x_i} + \frac{d}{dt} \left(\frac{\partial U}{\partial v_i} \right)$
 - Extend this to 4-d
 - Careful to make it a real 4-vector

 $$K^\nu = \frac{\partial e(A' u_\mu)}{\partial x_\mu} \frac{dA^\nu}{dt} = \left(\frac{\partial A^\nu}{\partial x_\mu} u_\mu - \frac{\partial A^\nu}{\partial x_\tau} u_\tau \right)$$

 Minkowski force for a charged particle in EM field

Electromagnetic Force

- $K^\nu = \epsilon \left(\frac{\partial A^\nu}{\partial x_\mu} u_\mu - \frac{\partial A^\nu}{\partial x_\tau} u_\tau \right)$
 - Rewrite using E and B

 $$E' = -\nabla \phi - \frac{\partial A^\mu}{\partial t} = \left(\frac{\partial A^\nu}{\partial x_\mu} \frac{\partial A^\mu}{\partial x_\nu} \right)$$

 $$\{ (v \times B) \} = (v \times (\nabla \times A)) = \left(\frac{\partial A^\nu}{\partial x_\mu} \frac{\partial A^\mu}{\partial x_\nu} \right)$$

 A bit of work

 $$K^\nu = \frac{\gamma}{c} e' E'$$
 $$K^\nu = \gamma e \left[E' + (v \times B) \right]$$

Electromagnetic Force

- Space part

 $$\frac{dp^\mu}{d\tau} = K^\nu = \gamma e \left[E' - (v \times B) \right]$$

 - Agrees with

 $$\frac{dp}{dt} = F = e \left[E - (v \times B) \right]$$

- Time part

 $$\frac{dp^\mu}{d\tau} = K^\nu = \frac{\gamma}{c} e' E$$

 - Rate of work done by the EM force

 $$\frac{dW}{dt} = \frac{E}{c}$$

 - Energy!

 - Confirmation promised earlier
Faraday Tensor

\[F^{\mu \nu} = e \left(\frac{\partial A^\nu}{\partial x^\mu} - \frac{\partial A^\mu}{\partial x^\nu} \right) = \left(\begin{array}{ccc} 0 & -E_z & -E_y \\ -E_z & 0 & -cB_z \\ -E_y & cB_z & 0 \end{array} \right) \]

- Tensor \(F^{\mu \nu} \) is called Faraday, or EM field tensor
- \(E \) and \(cB \) form a tensor of rank 2
- cf. \(\Phi \) and \(A \) make a 4-vector

Other Forces

- What happens with forces other than EM?
- There is no general method for making forces covariant
- You must deal with each force, case by case
- There are 4 (known) fundamental forces in nature
 - EM, gravity, weak and strong
- Covariant form has been found for weak and strong
 - Need quantum field theory to do this
- Gravity cannot be made covariant
 - Need general relativity

Summary

- Defined covariant form of physical quantities
 - 4-vectors: velocity, momentum
 - Tensors: metric, Lorentz
 - 1-forms: gradient
- Found how to Lorentz transform them
- Covariant form of Newton’s equation with EM force
 - EM potential \(\Phi \) \rightarrow 4-vector, EM force \(A \) \rightarrow tensor
 - Equation of motion \(\frac{d\Phi}{dt} = K^\mu \)