Lecture 18
Hamiltonian Equations of Motion
(Chapter 8)
What’s Ahead

- We are starting Hamiltonian formalism
 - Hamiltonian equation – Today and 11/26
 - Canonical transformation – 12/3, 12/5, 12/10
 - Close link to non-relativistic QM
- May not cover Hamilton-Jacobi theory
 - Cute but not very relevant
- What shall we do in the last 2 lectures?
 - Classical chaos?
 - Perturbation theory?
 - Classical field theory?
- Send me e-mail if you have preference!
Hamiltonian Formalism

- Newtonian \rightarrow Lagrangian \rightarrow Hamiltonian
 - Describe same physics and produce same results
 - Difference is in the viewpoints
 - Symmetries and invariance more apparent
 - Flexibility of coordinate transformation
- Hamiltonian formalism linked to the development of
 - Hamilton-Jacobi theory
 - Classical perturbation theory
 - Quantum mechanics
 - Statistical mechanics
Lagrange’s equations for n coordinates

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0 \quad i = 1, \ldots, n
\]

- n equations \rightarrow $2n$ initial conditions
- Can we do with 1^{st}-order differential equations?
 - Yes, but you’ll need $2n$ equations
 - We keep q_i and replace \dot{q}_i with something similar
 - We take the conjugate momenta $p_i \equiv \frac{\partial L(q_j, \dot{q}_j, t)}{\partial \dot{q}_i}$

2nd-order differential equation of n variables

\[q_i(t = 0) \quad \dot{q}_i(t = 0) \]
Configuration Space

- We considered \((q_1, \ldots, q_n)\) as a point in an \(n\)-dim. space
 - Called configuration space
 - Motion of the system \(\rightarrow\)
 A curve in the config space
- When we take variations,
 we consider \(q_i\) and \(\dot{q}_i\) as independent variables
 - i.e., we have \(2n\) independent variables in \(n\)-dim. space
 - Isn’t it more natural to consider the motion in \(2n\)-dim space?

\[q_i = q_i(t) \]
Consider coordinates and momenta as independent

State of the system is given by \((q_1, \ldots, q_n, p_1, \ldots, p_n)\)

Consider it a point in the \(2n\)-dimensional phase space

We are switching the independent variables

\((q_i, \dot{q}_i, t) \rightarrow (q_i, p_i, t)\)

A bit of mathematical trick is needed to do this
Legendre Transformation

- Start from a function of two variables \(f(x, y) \).
- Total derivative is:
 \[
df = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy \equiv u \, dx + v \, dy
\]
- Define \(g \equiv f - ux \) and consider its total derivative:
 \[
dg = df - d(ux) = u \, dx + v \, dy - u \, dx - x \, du = v \, dy - x \, du
\]
- i.e. \(g \) is a function of \(u \) and \(y \):
 \[
 \frac{\partial g}{\partial y} = v \quad \frac{\partial g}{\partial u} = -x
 \]
 If \(f = L \) and \((x, y) = (\dot{q}, q) \):
 \[
 L(q, q) \to g(p, q) = L - p \dot{q}
 \]
 This is what we need.
Hamiltonian

- **Define Hamiltonian:** \(H(q, p, t) = \dot{q}_i p_i - L(q, \dot{q}, t) \)

- **Total derivative is**
 \[
dH = p_i \dot{q}_i + \dot{q}_i dp_i - \frac{\partial L}{\partial q_i} dq_i - \frac{\partial L}{\partial \dot{q}_i} d\dot{q}_i - \frac{\partial L}{\partial t} dt
 \]

- **Lagrange’s equations say**
 \[
 \frac{\partial L}{\partial q_i} = \ddot{q}_i
 \]

- **This must be equivalent to**
 \[
dH = \dot{q}_i dp_i - \ddot{q}_i dq_i - \frac{\partial L}{\partial t} dt
 \]

- **Putting them together gives…**
Hamilton’s Equations

- We find \(\frac{\partial H}{\partial p_i} = \dot{q}_i \) and \(\frac{\partial H}{\partial q_i} = -\dot{p}_i \) and \(\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t} \)
 - \(2n \) equations replacing the \(n \) Lagrange’s equations
 - 1st-order differential instead of 2nd-order
 - “Symmetry” between \(q \) and \(p \) is apparent

- There is nothing new – We just rearranged equations
 - First equation links momentum to velocity
 - This relation is “given” in Newtonian formalism
 - Second equation is equivalent to Newton’s/Lagrange’s equations of motion
Quick Example

- Particle under Hooke’s law force $F = -kx$

 \[L = \frac{m}{2} \dot{x}^2 - \frac{k}{2} x^2 \]
 \[p = \frac{\partial L}{\partial \dot{x}} = m\dot{x} \]

 \[H = \dot{p} - L = \frac{m}{2} \dot{x}^2 + \frac{k}{2} x^2 \]
 \[= \frac{p^2}{2m} + \frac{k}{2} x^2 \]

 Replace \dot{x} with $\frac{p}{m}$

- Hamilton’s equations
 \[\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m} \]
 \[\dot{p} = -\frac{\partial H}{\partial x} = -kx \]

Usual harmonic oscillator
Energy Function

- Definition of Hamiltonian is identical to the energy function
 \[h(q, \dot{q}, t) = \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L(q, \dot{q}, t) \]

- Difference is subtle: \(H \) is a function of \((q, p, t)\)

- This equals to the total energy if
 - Lagrangian is \(L = L_0(q, t) + L_1(q, t)\dot{q}_i + L_2(q, t)\dot{q}_j\dot{q}_k \)
 - Constraints are time-independent
 - This makes \(T = L_2(q, t)\dot{q}_j\dot{q}_k \)
 - Forces are conservative
 - This makes \(V = -L_0(q) \)

See Lecture 4, or Goldstein Section 2.7
If the conditions make h to be total energy, we can skip calculating L and go directly to H.

For the particle under Hooke’s law force

$$H = E = T + V = \frac{p^2}{2m} + \frac{k}{2} x^2$$

This works often, but not always.

- when the coordinate system is time-dependent
 - e.g., rotating (non-inertial) coordinate system
- when the potential is velocity-dependent
 - e.g., particle in an EM field
Particle in EM Field

For a particle in an EM field

\[L = \frac{m}{2} \dot{x}_i^2 - q\phi + qA_i \dot{x}_i \]

We’d be done if we were calculating \(h \)

For \(H \), we must rewrite it using \(p_i = m\dot{x}_i + qA_i \)

\[H(x_i, p_i) = \frac{(p_i - qA_i)^2}{2m} + q\phi \]

We can’t jump on \(H = E \) because of the last term, but this is in fact \(E \).
Particle in EM Field

- Hamilton’s equations are

\[
\dot{x}_i = \frac{\partial H}{\partial p_i} = \frac{p_i - qA_i}{m}
\]

\[
\dot{p}_i = -\frac{\partial H}{\partial x_i} = q \frac{p_j - qA_j}{m} \frac{\partial A_j}{\partial x_i} - q \frac{\partial \phi}{\partial x_i}
\]

- Are they equivalent to the usual Lorentz force?

- Check this by eliminating \(p_i \)

\[
\frac{d}{dt} (m\dot{x}_i + qA_i) = q\dot{x}_i \frac{\partial A_j}{\partial x_i} - q \frac{\partial \phi}{\partial x_i}
\]

\[
\frac{d}{dt} (mv_i) = qE_i + q(v \times B)_i
\]

A bit of work
Conservation of Hamiltonian

- Consider time-derivative of Hamiltonian

\[
\frac{dH(q,p,t)}{dt} = \frac{\partial H}{\partial q} \dot{q} + \frac{\partial H}{\partial p} \dot{p} + \frac{\partial H}{\partial t}
\]

\[
= -\dot{p}q + \dot{q}p + \frac{\partial H}{\partial t}
\]

- Hamiltonian is conserved if it does not depend explicitly on \(t \)

- \(H \) may or may not be total energy
 - If it is, this means energy conservation
 - Even if it isn’t, \(H \) is still a constant of motion
Cyclic Coordinates

- A cyclic coordinate does not appear in L
 - By construction, it does not appear in H either

 $$H(\dot{\mathbf{q}}, p, t) = \dot{q}_i p_i - L(\dot{\mathbf{q}}, \dot{q}, t)$$

 - Hamilton’s equation says

 $$\dot{p} = -\frac{\partial H}{\partial q} = 0$$

 Conjugate momentum of a cyclic coordinate is conserved

 - Exactly the same as in the Lagrangian formalism
Cyclic Example

Central force problem in 2 dimensions

\[L = \frac{m}{2}(r^2 + r^2 \dot{\theta}^2) - V(r) \]

\[p_r = mr \dot{r}, \quad p_\theta = mr^2 \dot{\theta} \]

\[H = \frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} \right) + V(r) \]

θ is cyclic

\[p_\theta = \text{const} = l \]

Hamilton’s equations

\[\dot{r} = \frac{p_r}{m} \]

\[\dot{p}_r = \frac{l^2}{mr^3} - \frac{\partial V(r)}{\partial r} \]

Cyclic variable drops off by itself
Going Relativistic

- Practical approach
 - Find a Hamiltonian that “works”
 - Does it represent the total energy?

- Purist approach
 - Construct covariant Hamiltonian formalism
 - For one particle in an EM field

- Don’t expect miracles
 - Fundamental difficulties remain the same
Practical Approach

- Start from the relativistic Lagrangian that “works”

\[L = -mc^2 \sqrt{1 - \beta^2} - V(x) \]

\[p_i = \frac{\partial L}{\partial v_i} = \frac{mv_i}{\sqrt{1 - \beta^2}} \]

\[H = h = \sqrt{p^2c^2 + m^2c^4} + V(x) \]

- It does equal to the total energy

- Hamilton’s equations

\[\dot{x}_i = \frac{\partial H}{\partial p_i} = \frac{p_i c^2}{\sqrt{p^2c^2 + m^2c^4}} = \frac{p_i}{m\gamma} \]

\[\dot{p}_i = -\frac{\partial H}{\partial x_i} = -\frac{\partial V}{\partial x_i} = F_i \]
Consider a particle in an EM field

\[L = -mc^2 \sqrt{1 - \beta^2} - q\phi(x) + q(v \cdot A) \]

- Hamiltonian is still total energy
 \[H = m\gamma c^2 + q\phi \]
 \[= \sqrt{m^2 \gamma^2 v^2 c^2 + m^2 c^4} + q\phi \]

- Difference is in the momentum
 \[p_i = m\gamma v_i + qA_i \]

\[H = \sqrt{(p - qA)^2 c^2 + m^2 c^4} + q\phi \]

Not the usual linear momentum!
Practical Approach w/ EM Field

\[H = \sqrt{(p - qA)^2 c^2 + m^2 c^4 + q\phi} \]

- Consider \(H - q\phi \)

\[(H - q\phi)^2 - (p - qA)^2 c^2 = m^2 c^4 \]

- It means that \((H - q\phi, pc - qAc) \) is a 4-vector,
and so is \((H, pc) \)

- Similar to 4-momentum \((E/c, p) \) of a relativistic particle

- This particular Hamiltonian + canonical momentum transforms as a 4-vector

- True only for well-defined 4-potential such as EM field

\[H = \sqrt{(p - qA)^2 c^2 + m^2 c^4 + q\phi} \]

Remember \(p \) here is not the linear momentum!
Covariant Lagrangian for a free particle

\[\Lambda = \frac{1}{2} m \nu \mu \nu \]

\[p^\mu = \frac{\partial \Lambda}{\partial u_\mu} = m u^\mu \]

\[H = \frac{p_\mu p^\mu}{2m} \]

- We know that \(p^0 \) is \(E/c \)
- We also know that \(x^0 \) is \(ct \)…

Energy is the conjugate “momentum” of time

- Generally true for any covariant Lagrangian
- You know the corresponding relationship in QM
Purist Approach

- Value of Hamiltonian is
 \[H = \frac{p_\mu p^\mu}{2m} = \frac{mc^2}{2} \]
 This is constant!

- What is important is \(H \)'s dependence on \(p^\mu \)

- Hamilton's equations
 \[
 \frac{dx^\mu}{d\tau} = \frac{\partial H}{\partial p_\mu} = \frac{p^\mu}{m} \quad \frac{dp^\mu}{d\tau} = -\frac{\partial H}{\partial x_\mu} = 0
 \]

- Time components are
 \[
 \frac{d(ct)}{d\tau} = \frac{E}{mc} = \gamma c \quad \frac{d(E/c)}{d\tau} = 0
 \]
 Energy definition and conservation

- 4-momentum conservation
Purist Approach w/ EM Field

- With EM field, Lagrangian becomes
 \[\Lambda(x^\mu, u^\mu) = \frac{1}{2} m u_\mu u^\mu + q u^\mu A_\mu \rightarrow p^\mu = m u^\mu + q A^\mu \]

- Hamilton’s equations are
 \[\frac{dx^\mu}{d\tau} = \frac{\partial H}{\partial p_\mu} = \frac{p^\mu - q A^\mu}{m} \quad \frac{dp^\mu}{d\tau} = -\frac{\partial H}{\partial x_\mu} = -\left(p_\nu - q A_\nu \right) \frac{\partial A^\nu}{\partial x_\mu} \]

- A bit of work can turn them into
 \[m \frac{du^\mu}{d\tau} = q \left(\frac{\partial A^\nu}{\partial x_\mu} - \frac{\partial A^\mu}{\partial x_\nu} \right) u_\nu = K^\mu \]

4-force
In Hamiltonian formalism, EM field always modify the canonical momentum as
\[p'^\mu = p^\mu + qA^\mu \]

A handy rule:

Hamiltonian with EM field is given by replacing \(p^\mu \) in the field-free Hamiltonian with \(p^\mu - qA^\mu \)

Often used in relativistic QM to introduce EM interaction
Summary

- Constructed Hamiltonian formalism
 - Equivalent to Lagrangian formalism
 - Simpler, but twice as many, equations
 - Hamiltonian is conserved (unless explicitly t-dependent)
 - Equals to total energy (unless it isn’t) (duh)
 - Cyclic coordinates drops out quite easily

- A few new insights from relativistic Hamiltonians
 - Conjugate of time = energy
 - $p^\mu - qA^\mu$ rule for introducing EM interaction