What We Did Last Time

LC circuit is a simple harmonic oscillator
- \(L \sim \text{mass}, \ C \sim \text{spring} \)

RLC circuit is a damped oscillator
- Behavior depends on \(R \)
- Weak/strong/critical damping

AC voltage source

\[
V = V_0 \cos \omega t \quad \text{and} \quad \bar{P} = \frac{V_0 I_0}{2} = V_{\text{rms}} I_{\text{rms}}
\]
Today's Goals

Introduce Impedance
- Extension of resistance into AC circuits
- R, L, and C (and combinations) can be treated together
- Catch: must do this in complex numbers

Use impedance to analyze simple AC circuits

1. Frequency filters
 - Combine R, L, or C to selectively remove (= filter out) signals with high or low frequencies

2. Resonance circuit
 - Combine $R + L + C$ to enhance signals near a particular frequency
 - Quality Factor Q

Impedance

Impedance is a generalization of resistance
- Drive "something" with an AC voltage source
- Could be an R, C, L or a combination

How does the current relate to the voltage?
- For R, the answer is simple:
 \[V_0 \cos \omega t = R \cdot I_0 \cos \omega t \quad \Rightarrow \quad V_0 = R \cdot I_0 \]
- It would be nice if L and C were as simple as $V_0 = Z \cdot I_0$
- Not possible as long as we keep using $\cos \omega t$ and $\sin \omega t$

To simplify, we introduce a complex notation
\[V(t) = \text{Re}(V_0 e^{i\omega t}) = V_0 \cos \omega t \]

Omit "Re" as implicitly being there
Impedance of C

Let’s study C first

\[Q(t) = CV(t) = CV_0 e^{i\omega t} \]

\[I(t) = \frac{dQ(t)}{dt} = CV_0 i\omega e^{i\omega t} \]

- The (complex) current can be written as
 \[I(t) = I_0 e^{i\omega t} \] where \(I_0 = i\omega CV_0 \)
- If we take the real part
 \[I(t) = -CV_0 \omega \sin \omega t \]

Define the **impedance of a capacitor** by

\[V_0 = Z \cdot I_0 \]

\[Z(\omega) = \frac{V_0}{I_0} = \frac{1}{i\omega C} \]

- This is a frequency-dependent imaginary number

Impedance of L

For an L connected to the same source

\[V(t) = V_0 e^{i\omega t} = L \frac{dI(t)}{dt} \]

\[I(t) = \frac{V_0}{L} \int e^{i\omega t} dt = \frac{V_0}{i\omega L} e^{i\omega t} \]

- Therefore \(I_0 = \frac{V_0}{i\omega L} \)
- Take the real part \(I(t) = \frac{V_0}{L\omega} \sin \omega t \)

The **impedance of an inductor** is

\[Z = \frac{V_0}{I_0} = i\omega L \]

- Another frequency-dependent imaginary number
Magnitude of Impedance

Impedance of L and C depends on the frequency

$$V_0 = Z(\omega)I_0$$

Impedance varies depending on the frequency ω

$$Z_L = i\omega L$$

$$Z_R = R$$

$$Z_C = \frac{1}{i\omega C}$$

Phase of Impedance

Capacitor C

$$l(t) = \text{Re}(i\omega CV_0 e^{i\omega t})$$

$$= -\omega CV_0 \sin \omega t$$

- Voltage lags the current by 90°

Inductor L

$$l(t) = \text{Re}\left(\frac{V_0}{i\omega L} e^{i\omega t}\right)$$

$$= \frac{V_0}{\omega L} \sin \omega t$$

- Voltage leads the current by 90°

Both amplitudes and phases are expressed in the impedance Z

$$Z_C = \frac{1}{i\omega C} \rightarrow \arg(Z_C) = -\frac{\pi}{2}$$

$$Z_L = i\omega L \rightarrow \arg(Z_L) = \frac{\pi}{2}$$
Combining Impedance

Total impedance of a network of resistors, capacitors, and inductors can be calculated by adding up Z_R, Z_C, and Z_L.

- Same rules as resistor addition — just in complex numbers

$$Z = R + i\omega L$$

Impedance summarizes the network’s AC characteristics

$$Z = \frac{V(t)}{I(t)} = \frac{V_0 e^{i\omega t}}{I_0 e^{i\omega t}} = \frac{V_0}{I_0}$$

- Magnitude $|Z|$ is the ratio between peak voltage and peak current
- Complex phase $\text{arg}(Z)$ is the phase difference between voltage and current

Low Pass Filter

Series $R + C$ is driven by an AC voltage source

- Total impedance is $Z_{RC} = R + \frac{1}{i\omega C}$
- Current is
 $$I(t) = \frac{V_0 e^{i\omega t}}{Z_{RC}} = \frac{V_0}{R + 1/i\omega C} e^{i\omega t}$$
 $$V_{in} = V_0 e^{i\omega t}$$

The “output” voltage around C is

$$V_{out}(t) = Z_C I(t) = \frac{1}{i\omega C} \frac{V_0}{R + 1/i\omega C} e^{i\omega t} = \frac{V_0}{i\omega RC + 1} e^{i\omega t}$$

- At low frequency ($\omega RC << 1$), V_{out} is close to V_{in}
- At high frequency ($\omega RC >> 1$), V_{out} approaches zero

This network passes low freq. and blocks high freq.

= a low-pass filter
Low Pass Filter

The frequency response of a simple low-pass filter is

\[\frac{V_{out}}{V_{in}} = \frac{1}{i\omega RC + 1} = \frac{1}{\sqrt{(\omega RC)^2 + 1}} \]

- In log-log plot, it’s two straight lines joined by a round corner

The cut-off frequency is

\[\omega = \frac{1}{RC} \quad f = \frac{1}{2\pi RC} \]

- This is where \(V_{out} = \frac{1}{\sqrt{2}} V_{in} \)

Above the cut-off, \(V_{out} \) drops inversely proportionally to \(\omega \)

- Such filter is called a first-order filter
- EE people call it a “−6 dB/octave” or “−20 dB/decade” filter

Other Filters

Low-pass and high-pass filters can be built with RC or RL

- All are first-order, ±6 dB/octave filters
- Steeper filters are usually made with active electronics
- Nowadays often with digital signal processing
Series RLC Circuit

An AC voltage source drives $R + L + C$
- Current is common $I = I_0 e^{i\omega t}$
- Total voltage is $V = V_0 e^{i\omega t} = V_R + V_L + V_C$

Use impedance

$$\frac{V_0 e^{i\omega t}}{R + i\omega L + \frac{1}{i\omega C}} I_0 e^{i\omega t}$$

Remember: addition of impedance works in the same way as resistance
- It just has to be done in the complex plane

Resonance

Total impedance changes with ω
- $Z_L = i\omega L$ grows, $Z_C = 1/i\omega C$ shrinks

Magnitude is

$$|Z_{\text{total}}| = \left| R + i\omega L + \frac{1}{i\omega C} \right| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2}$$

Minimum when Z_L and Z_C cancel each other

$$\min |Z_{\text{total}}| = R \quad \text{when} \quad i\omega L + \frac{1}{i\omega C} = 0 \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

At the resonance
- Impedance is minimum \Rightarrow Current is maximum
- Impedance is real \Rightarrow Current and voltage are in phase
Resonance

At the resonance
- Impedance is minimum ➔ Current is maximum
- Impedance is real ➔ Current and voltage are in phase

\[
\left| \frac{I_0}{V_0} \right| = \left| Z \right| = \frac{1}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2}}
\]

Current peaks at the resonance
Peak is higher and narrower for smaller \(R \)

Phase

Phase of impedance tells us if \(V \) and \(I \) are synchronized

\[
\arg(Z) = \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R} \right)
\]

- It changes from \(-90^\circ\) to \(+90^\circ\) as \(\omega \) crosses the resonance

Current leads voltage below the resonance
Current lags behind voltage above the resonance

Phase shift is more abrupt for smaller \(R \)
Quality Factor

How steep (or narrow) is the resonance?
- Look at the frequencies where \(\text{Im}(Z) \) and \(\text{Re}(Z) \) are the same size
- That’s where \(I_0 \) is \(1/\sqrt{2} \) times the peak value
- Suppose the damping is weak, i.e., \(R \ll 2\sqrt{L/C} \)

\[\omega^2 = \frac{1}{LC} \pm \frac{R}{L} \sqrt{\frac{1}{LC} - \omega_0^2} \]
- Difference between the two solutions \(\omega_1 \) and \(\omega_2 \) \((\omega_1 > \omega_2)\) is

\[\frac{\omega_1 - \omega_2}{\omega_0} = \frac{R}{\omega_0 L} = \frac{1}{Q} \]

The larger the \(Q \), the narrower and steeper the resonance

What is \(Q \)?

\(Q \) is the relative width (in frequency) of the resonance
- Ex: FM stations use 87.5–108 MHz signals separated by 200 kHz
- The radio’s tuning circuit must have \(Q > Q_{\text{min}} = \frac{108 \times 10^6 \text{Hz}}{200 \times 10^3 \text{Hz}} = 504 \)

Think of the same \(RLC \) circuit as a weak-damped oscillator
- The solution was \(Q(t) = e^{-\alpha t} e^{\pm i\omega t} \)
- The decay time is \(\tau = \frac{1}{\alpha} = \frac{2L}{R} \)
- In that time, it oscillates by

\[\omega \tau = \omega_0 \frac{2L}{R} = 2Q \text{ radian} \]

\(Q \) is (proportional to) the number of oscillations it makes before dying
Summary

Impedance of R, C, and L

$$Z_R = \frac{V_R}{I_R} = R \quad Z_C = \frac{V_C}{I_C} = \frac{1}{i\omega C} \quad Z_L = \frac{V_L}{I_L} = i\omega L$$

- Generally a frequency-dependent complex number

Low- and high-pass filters

- Cut-off frequency $\omega_{\text{cutoff}} = \frac{1}{RC}$ or $\omega_{\text{cutoff}} = \frac{R}{L}$

Resonance of an RLC circuit $\omega_0 = \frac{1}{\sqrt{LC}}$

- Current amplitude peaks
- Phase between voltage and current changes by 180°

Quality factor Q

- $Q = \frac{\omega_0 L}{R}$

 = narrowsness (steepness) of the resonance

 = how many "rings" a weakly damped oscillators make