What We Did Last Time

Impedance of R, C, and L

$$Z_R = \frac{V_R}{I_R} = R \quad Z_C = \frac{V_C}{I_C} = \frac{1}{i\omega C} \quad Z_L = \frac{V_L}{I_L} = i\omega L$$

- Generally a frequency-dependent complex number

Low- and high-pass filters
- Cut-off frequency $\omega_{\text{cutoff}} = \frac{1}{RC}$ or $\omega_{\text{cutoff}} = \frac{R}{L}$

Resonance of an RLC circuit $\omega_0 = \frac{1}{\sqrt{LC}}$
- Current amplitude peaks
- Phase between voltage and current changes by 180°

Quality factor Q
- $Q = \frac{\omega_0 L}{R}$
 - = narrowness (steepness) of the resonance
Today’s Goals

Introduce displacement current
- The last element of Maxwell’s equations

Complete Maxwell’s equations

Study Maxwell’s eqns. in vacuum
- Derive wave equations
- Find a solution
 → Electromagnetic waves

Incomplete Equations

In Lecture #14, we got this set of equations

\[
\begin{align*}
\nabla \cdot E &= 4\pi \rho \\
\nabla \cdot B &= 0 \\
\n\nabla \times E &= -\frac{1}{c} \frac{\partial B}{\partial t} \\
\n\nabla \times B &= \frac{4\pi}{c} J
\end{align*}
\]

There is a small problem
- \(\nabla \times B = \frac{4\pi}{c} J \) means \(\text{div } J \) must be zero
- Charge conservation tells us \(\text{div } J = -\frac{\partial \rho}{\partial t} \)
- \(\frac{\partial \rho}{\partial t} \) may not be zero if the system is time-dependent

The above equations work only for stationary charge distributions
Fixing the Inconsistency

Something must be done to \(\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} \)
- Try adding a vector \(\mathbf{F} \) to the rhs
- What is \(\mathbf{F} \)? Remember that div of the lhs is 0

\[
\nabla \cdot \left(\frac{4\pi}{c} \mathbf{J} + \mathbf{F} \right) = 0 \rightarrow \nabla \cdot \mathbf{F} = -\frac{4\pi}{c} \nabla \cdot \mathbf{J} = \frac{4\pi}{c} \frac{\partial \rho}{\partial t}
\]
- Take time derivative of Gauss’s law

\[
\nabla \cdot \mathbf{E} = 4\pi \rho \quad \text{time deriv.} \quad \frac{\partial}{\partial t} (\nabla \cdot \mathbf{E}) = 4\pi \frac{\partial \rho}{\partial t}
\]
- Compare the rhs

\[
\frac{1}{c} \frac{\partial}{\partial t} (\nabla \cdot \mathbf{E}) = \nabla \cdot \mathbf{F} \rightarrow \mathbf{F} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}
\]
We’ve found the missing piece!

Displacement Current

New-and-improved Ampère’s Law:
\[
\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}
\]
Second term can be seen as an additional “current”

\[
\nabla \times \mathbf{B} = \frac{4\pi}{c} \left(\mathbf{J} + \mathbf{J}_d \right) \quad \text{where} \quad \mathbf{J}_d \equiv \frac{1}{4\pi} \frac{\partial \mathbf{E}}{\partial t}
\]
- The (obscure) name is historical

Displacement current \(\mathbf{J}_d \) is not a real current
- It does not describe charges flowing through some region
- but it acts like a real current
- Let’s see how it fits in an example
Displacement Current

Consider a charging capacitor

\[l = \frac{dQ}{dt} \]

Apply Ampère to loop \(C \) \(\Rightarrow \) \(\oint_C \mathbf{B} \cdot d\mathbf{s} = \frac{4\pi}{c} l = \frac{4\pi}{c} \int_S \mathbf{J} \cdot d\mathbf{a} \)

- Fine, but this is supposed to hold for any \(S \) that's bounded by \(C \)

Choose \(S' \) that intersects the capacitor \(\Rightarrow \) \(\mathbf{J} = 0 \) on \(S' \)

- Naive Ampère fails because \(\int_{S'} \mathbf{J} \cdot d\mathbf{a} = 0 \)

Displacement Current

\(\mathbf{E} \) field between the plates is increasing with time

- If the capacitor has an area \(A \), \(\mathbf{E} = \frac{4\pi Q}{A} \) \(\Rightarrow \) \(\frac{d\mathbf{E}}{dt} = \frac{4\pi}{A} \frac{dQ}{dt} = \frac{4\pi}{A} l \)

Displacement current is

\(\mathbf{J}_d = \frac{1}{4\pi} \frac{\partial \mathbf{E}}{\partial t} = \frac{l}{A} \Rightarrow \int_{S'} \mathbf{J}_d \cdot d\mathbf{a} = \int_{S'} \frac{l}{A} d\mathbf{a} = l \)

“Extended” Ampère works \(\oint_C \mathbf{B} \cdot d\mathbf{s} = \frac{4\pi}{c} \int_S (\mathbf{J} + \mathbf{J}_d) \cdot d\mathbf{a} = \frac{4\pi}{c} l \)
More Generally

For Ampère’s Law to work consistently, \(\frac{4\pi}{c} \int_S (\mathbf{J} + J_d) \cdot d\mathbf{a}\) must depend only on the border of \(S\)

- Using charge conservation
 \[\int_S \mathbf{J} \cdot d\mathbf{a} - \int_{S'} \mathbf{J} \cdot d\mathbf{a}' = -\frac{dQ_i}{dt}\]

- Gauss’s Law tells us
 \[\int_S \mathbf{E} \cdot d\mathbf{a} - \int_{S'} \mathbf{E} \cdot d\mathbf{a}' = 4\pi Q_i\]

\[\int_S \mathbf{J} \cdot d\mathbf{a} - \int_{S'} \mathbf{J} \cdot d\mathbf{a}' = -\frac{1}{4\pi} \frac{d}{dt} \left(\int_S \mathbf{E} \cdot d\mathbf{a} - \int_{S'} \mathbf{E} \cdot d\mathbf{a}'\right)\]

\[\int_S \left(\mathbf{J} + \frac{1}{4\pi} \frac{\partial \mathbf{E}}{\partial t}\right) \cdot d\mathbf{a} = \int_{S'} \left(\mathbf{J} + \frac{1}{4\pi} \frac{\partial \mathbf{E}}{\partial t}\right) \cdot d\mathbf{a}'\]

Complete Maxwell’s Equations

In differential forms:

CGS

\[
\begin{align*}
\nabla \cdot \mathbf{E} &= 4\pi \rho \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}
\end{align*}
\]

SI

\[
\begin{align*}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\end{align*}
\]

- Maxwell introduced the last term (in 1861) based purely on the argument of mathematical consistency

Typo in Purcell §9.3 (15')
Integral Forms

First two equations apply to any volume V enclosed by surface S
Second two apply to any surface S bounded by a contour C
$\oint_C \mathbf{E} \cdot d\mathbf{s} = -\frac{1}{c} \frac{d\Phi_B}{dt}$
$\oint_C \mathbf{B} \cdot d\mathbf{s} = \frac{4\pi}{c} I + \frac{1}{c} \frac{d\Phi_E}{dt}$

Maxwell in Vacuum

In vacuum, where $\rho = 0$ and $J = 0$,
$$\nabla \cdot \mathbf{E} = 4\pi \rho$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

No source \Rightarrow No field?
- If \mathbf{E} and \mathbf{B} are both changing with time, they can create each other
- It’s like pulling yourself up with bootstraps?

Let’s try to solve these equations together

CGS

$\Phi_E \equiv \int_S \mathbf{E} \cdot d\mathbf{a}$
$\Phi_B \equiv \int_S \mathbf{B} \cdot d\mathbf{a}$
$Q \equiv \int_V \rho \, dv$
$I \equiv \int_S \mathbf{J} \cdot d\mathbf{a}$
Solving Maxwell in Vacuum

Strategy: Decouple E and M

Faraday $\nabla \times E = -\frac{1}{c} \frac{\partial B}{\partial t}$

Same except for $-1/c$ $\nabla \times B = \frac{1}{c} \frac{\partial E}{\partial t}$

$\nabla \times (\nabla \times E) = \nabla \times \left(-\frac{1}{c} \frac{\partial B}{\partial t}\right)$

$\nabla \times (\nabla \times B) = \frac{\partial}{\partial t} \left(\nabla \times B\right) = \frac{\partial}{\partial t} \left(\frac{1}{c} \frac{\partial E}{\partial t}\right)$

Faraday Ampère

$\nabla \times (\nabla \times E) = -\frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$

$\nabla \times (\nabla \times B) = \frac{\partial^2 B}{\partial t^2}$

$\nabla \times (\nabla \times E) = -\frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$

An E-only differential equation

How about B?

Solving Maxwell in Vacuum

Repeat, but this time try to eliminate E

Ampère $\nabla \times B = \frac{1}{c} \frac{\partial E}{\partial t}$

Same except for $1/c$ $\nabla \times E = -\frac{1}{c} \frac{\partial B}{\partial t}$

$\nabla \times (\nabla \times B) = \nabla \times \left(\frac{1}{c} \frac{\partial E}{\partial t}\right)$

$\nabla \times (\nabla \times E) = \frac{\partial}{\partial t} \left(\nabla \times E\right) = \frac{\partial}{\partial t} \left(-\frac{1}{c} \frac{\partial B}{\partial t}\right)$

$\nabla \times (\nabla \times B) = -\frac{1}{c^2} \frac{\partial^2 B}{\partial t^2}$

$\nabla \times (\nabla \times E) = \frac{\partial^2 E}{\partial t^2}$

Always 0

$\nabla \times (\nabla \times B) = 0$

$\nabla \times (\nabla \times E) = 0$

A B-only differential equation

Now we must solve $\nabla^2 E = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$ and $\nabla^2 B = \frac{1}{c^2} \frac{\partial^2 B}{\partial t^2}$
1-D Wave Solutions

Suppose $E(x,y,z,t) = E(x,t)$, i.e. no y and z dependence.

\[
\nabla^2 E = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = \frac{1}{c^2} \frac{\partial^2 E}{\partial x^2}
\]

This can be satisfied if $E(x,t) = f(x \pm ct)$

\[
\text{lhs} = f''(x \pm ct) \quad \Rightarrow \quad \text{rhs} = \frac{1}{c^2} (\pm c)^2 f''(x \pm ct)
\]

What is $f(x \pm ct)$?

- At $t = 0$, $f(x)$ is an arbitrary vector function of x
- As t increases, $f(x \pm ct)$ moves along the x axis
 - $f(x + ct)$ moves toward negative x with velocity $-c$
 - $f(x - ct)$ moves toward positive x with velocity $+c$

Waves propagating with the speed of light

Electromagnetic Waves

Solutions to Maxwell’s equations in vacuum are waves of E and B fields = electromagnetic waves

- Maxwell, based on the experimental data of the day, found the speed was 3.1×10^8 m/s

 “We can scarcely avoid the conclusion that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena”

- Electricity and magnetism were unified with optics

In CGS, the speed comes out to be c

- This is because of the $1/c$ in Faraday and Ampère
- We checked that $1/c$ came naturally out of Special Relativity
 - NB: we only used Coulomb + Relativity there
Summary

Complete Maxwell’s equations

\[\nabla \cdot \mathbf{E} = 4\pi \rho \quad \nabla \cdot \mathbf{B} = 0 \]
\[\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \quad \nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \]

- Displacement current \(\mathbf{J}_d = \frac{1}{4\pi} \frac{\partial \mathbf{E}}{\partial t} \) needed for mathematical consistency

Electromagnetic waves

- Maxwell’s eqns. in vacuum \(\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} \quad \nabla^2 \mathbf{B} = \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} \)

- Solutions are waves propagating with speed of light
 ... which is light itself