What We Did Last Time

A dipole generates electric field \(E_r = \frac{2p \cos \theta}{r^3}, E_\theta = \frac{p \sin \theta}{r^3} \)

A dipole in an electric field receives:
- Torque \(\mathbf{N} = \mathbf{p} \times \mathbf{E} \)
- If \(\mathbf{E} \) is non-uniform, net force \(\mathbf{F} = (\mathbf{p} \cdot \nabla) \mathbf{E} \)
 - Dipoles are attracted to stronger \(\mathbf{E} \) field

Density of polarization \(\mathbf{P} = N \mathbf{p} \)
- Small volume \(dv \) of dielectric looks like a dipole \(\mathbf{P} dv \)
- A cylinder parallel to \(\mathbf{P} \) looks like charge density \(\pm \mathbf{P} \) on the ends
- Average electric field inside the cylinder is \(\langle \mathbf{E} \rangle = -4\pi \mathbf{P} \)

A uniformly polarized sphere
- External field looks like produced by a dipole \(\mathbf{VP} \)
- Internal field \(\mathbf{E} = -(4\pi/3) \mathbf{P} \)
Today’s Goals

Connect polarization P and the dielectric constant ε
Continue discussion of polarized sphere
 ○ Boundary condition at the surface
 ○ How to make a sphere polarized uniformly
Examine the effects of non-uniform polarization
 ○ Non-uniform P creates “bound” charge distribution
 ○ Charge screening, electric displacement
Discuss time-dependent E field in dielectrics
 ○ Modified Maxwell’s equations
 ○ Electromagnetic waves in dielectrics

Dielectric Constant

How does P relate to the dielectric constant ε?
Consider the filled capacitor again
 ○ Electric field is reduced by factor $1/\varepsilon$
 $$E = \frac{4\pi\sigma}{\varepsilon} = 4\pi\sigma - 4\pi P$$

Field from charge on the plates
Field from polarization

$$E = \varepsilon E - 4\pi P$$

$$\frac{P}{E} = \frac{\varepsilon - 1}{4\pi} \equiv \chi_e$$

Electric susceptibility

Polarization density P is related to the average electric field E that causes it by:
 ○ This is an empirical law, and is “correct” within limits
 $$P = \chi_e E = \frac{\varepsilon - 1}{4\pi} E$$
Uniformly Polarized Sphere

A dielectric sphere is uniformly polarized along +z
- It contains dipoles \(p = q s \) with density \(N \)
 \[\mathbf{P} = N \mathbf{p} = N q s \]
- This can be seen as two overlapping spheres
 - Charge densities are \(+Nq\) and \(−Nq\)
 - Centers are separated by distance \(s\)
- From outside, each sphere looks like a point charge (recall Gauss) \(+NqV\) and \(−NqV\)

Field outside is identical to that generated by a single dipole moment \(NqVs = \mathbf{V.P}\)
- We know this field from the last lecture:
 \[\varphi(r > R) = \frac{\mathbf{V.P} \cdot \hat{r}}{r^2} = \frac{\mathbf{V.P} \cos \theta}{r^2} \]

Uniformly Polarized Sphere

Inside the sphere, there is no net charge
→ The field must obey Laplace’s eqn.
- We also need the boundary condition, i.e., values of \(\varphi\) at the surface, which we know from the outside field
 \[\varphi(r = R) = \frac{\mathbf{V.P} \cos \theta}{R^2} = \frac{\mathbf{V}}{R^3} \mathbf{P} \cos \theta = \frac{4\pi}{3} \mathbf{Pz} \]
- A uniform electric field along +z works
 \[\varphi(r < R) = \frac{4\pi}{3} \mathbf{Pz} \quad \Rightarrow \quad \mathbf{E}(r < R) = -\frac{4\pi}{3} \mathbf{P} \]

The field due to a uniformly polarized sphere is
- Inside: \(\mathbf{E} = -(4\pi/3)\mathbf{P}\)
- Outside: identical to the field generated by a dipole \((4\pi/3)R^3\mathbf{P}\)
Boundary Conditions

Electric potential ϕ is a continuous function of space
- Otherwise there would be infinite electric field

As a result, electric field has to satisfy the following conditions on the surface of the dielectric
- E_\parallel parallel to the surface is continuous
- E_\perp perpendicular to the surface may be discontinuous

Check this with the uniformly polarized sphere:

For outside:
$$\begin{cases} E_r = \frac{8\pi}{3} P \cos \theta \\ E_\theta = \frac{4\pi}{3} P \sin \theta \end{cases}$$

For inside:
$$\begin{cases} E_r = -\frac{4\pi}{3} P \cos \theta \\ E_\theta = \frac{4\pi}{3} P \sin \theta \end{cases}$$

Dielectric Sphere in E Field

How does a dielectric sphere get uniformly polarized?
- Try the simplest way — put it in a uniform external field E_0
- Suppose this leads to a uniform polarization P
- P generates a uniform field inside: $E' = -\frac{4\pi}{3} P$

Total field inside is $E_{\text{inside}} = E_0 + E' = E_0 - \frac{4\pi}{3} P$

Resulting polarization is
$$P = \chi_0 E_{\text{inside}} = \frac{\varepsilon - 1}{4\pi} \left(E_0 - \frac{4\pi}{3} P \right)$$

We can solve this to find
$$E' = \left(\frac{3}{\varepsilon + 2} \right) E_0$$

and
$$P = \frac{3}{4\pi} \left(\frac{\varepsilon - 1}{\varepsilon + 2} \right) E_0$$

- Uniform external field polarizes the sphere uniformly
Bound Charge

Consider a small area da inside a dielectric
- Polarization $P = Nq\sigma$
 - How many dipoles “straddle” this area?

- Charge $qN\sigma \cdot da = P \cdot da$ is split from the corresponding negative charge by the area da

Integrate this over a closed surface S
- How much (negative) charge remains inside?
 $$ Q = -\int_S P \cdot da $$

- Use the Divergence Theorem
 $$ \rho = -\text{div} P $$
 “Bound” charge distribution due to non-uniform polarization

Free and Bound Charges

Inside dielectric, two “types” of charges may exist:
- “Bound” charge ρ_{bound} belongs to the dielectric material
 - Appears only when E field polarizes the dielectric
 $$ \rho_{\text{bound}} = -\text{div} P \quad P = \frac{\epsilon - 1}{4\pi} E $$

- “Free” charge ρ_{free} is brought in from outside

Both “bound” and “free” charges create E field
$$ \text{div} E = 4\pi (\rho_{\text{free}} + \rho_{\text{bound}}) $$

- For a given ρ_{free} distribution and a constant ϵ
 $$ \text{div} E = 4\pi \rho_{\text{free}} - (\epsilon - 1) \text{div} E $$
 $$ \text{div} E = \frac{4\pi \rho_{\text{free}}}{\epsilon} $$

E follows Gauss’s Law with ρ_{free} except for a factor $1/\epsilon$
Screening

A point charge Q is inside a dielectric
- Q is the only "free" charge here

Electric field at distance r from the charge is
$$ E = \frac{Q}{\varepsilon r^2} \hat{r} $$
Coulomb reduced by $1/\varepsilon$
- Polarization density P due to this field is
$$ P = \frac{\varepsilon - 1}{4\pi} E = \frac{(\varepsilon - 1)Q}{4\pi \varepsilon r^2} \hat{r} $$
- This creates bound charge density $\rho_{\text{bound}} = \nabla \cdot P = \frac{(\varepsilon - 1)Q}{4\pi \varepsilon} \left(\frac{\hat{r}}{r^2} \right)$
- This div is zero everywhere except at the origin
- Integrate inside a very small sphere around Q
$$ \int_V \rho_{\text{bound}} dV = -\int_S P \cdot d\mathbf{a} = -\frac{\varepsilon - 1}{\varepsilon} Q $$
Negative charge surrounds Q

Polarization creates a "screen" around free charges

Electric Displacement

Electric displacement D is defined by $D \equiv E + 4\pi P$
- For electric field inside an isotropic dielectric
$$ P = \frac{\varepsilon - 1}{4\pi} E \rightarrow D = \varepsilon E $$
- D satisfies Gauss's Law with free charge: $\nabla \cdot D = 4\pi \rho_{\text{free}}$

Importance of D is more historic than practical
- It’s easy to calculate only in linear, isotropic dielectric
 - In that case, writing D instead of εE saves only a little ink
- In a more complex medium, it’s safer to use E and $4\pi P$, and keep track of how the material reacts to E
Bound-Charge Current

In a non-static system, \mathbf{P} may vary with time

- Imagine \mathbf{s} changing in response to changing \mathbf{E}
- Charges $+q$ and $-q$ move \rightarrow “bound” current

$$
\mathbf{J}_{\text{bound}} = N \left(q \frac{dr}{dt} - q \frac{dr}{dt} \right) = Nq \frac{ds}{dt} = \frac{\partial \mathbf{P}}{\partial t}
$$

$\mathbf{J}_{\text{bound}}$ adds to the “free” current \mathbf{J} in generating \mathbf{B}

$$
\nabla \times \mathbf{B} = \frac{4\pi}{c} \left(\mathbf{J} + \frac{\partial \mathbf{P}}{\partial t} \right) + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial }{\partial t} \left(\mathbf{E} + 4\pi \mathbf{P} \right)
$$

For a linear isotropic dielectric,

$$
\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{\varepsilon}{c} \frac{\partial \mathbf{E}}{\partial t}
$$

Electromagnetic Waves

Inside a dielectric with no free charge and no free current

$$
\nabla \cdot \mathbf{E} = 0 \quad \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}
$$

$$
\nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{B} = \frac{\varepsilon}{c} \frac{\partial \mathbf{E}}{\partial t}
$$

- Same technique used in Lecture #18 turn them into
 $$
 \nabla^2 \mathbf{E} = \frac{\varepsilon}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} \quad \text{and} \quad \nabla^2 \mathbf{B} = \frac{\varepsilon}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2}
 $$

- Solutions are waves propagating with speed $c/\sqrt{\varepsilon} < c$

EM waves travel slower in a dielectric by factor $n = \sqrt{\varepsilon}$

- n is the **index of refraction** of the material
Electromagnetic Waves

Plane wave solutions of the Maxwell’s eqns. are
\[E = E_0 \sin(k \cdot r - \omega t) \quad B = B_0 \sin(k \cdot r - \omega t) \]

- Wave equation:
 \[\nabla^2 E = \frac{\varepsilon}{c^2} \frac{\partial^2 E}{\partial t^2} \quad k^2 = \frac{\varepsilon}{c^2} \omega^2 \quad \frac{\omega}{k} = \frac{c}{\sqrt{\varepsilon}} \]

- Divergence:
 \[\nabla \cdot E = 0 \quad \nabla \cdot B = 0 \quad \mathbf{k} \perp \mathbf{E}_0 \quad \mathbf{k} \perp \mathbf{B}_0 \]

- Curl:
 \[\nabla \times E = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \quad \mathbf{k} \times \mathbf{E}_0 = \frac{\omega}{c} \mathbf{B}_0 \quad \hat{\mathbf{k}} \times \mathbf{E}_0 = \frac{1}{\sqrt{\varepsilon}} \mathbf{B}_0 \]

Similar to the vacuum solutions except:
- Propagation velocity is reduced by \(\frac{1}{\sqrt{\varepsilon}} \)
- \(|E|\) is smaller than \(|B|\) by the same factor

Frequency Dependence

Discussion so far applies to any dielectric = any insulator
- All insulators are transparent, with \(n = \sqrt{\varepsilon} \)
- Index of refraction of water is \(\sqrt{80} = 8.9 \) \[\text{Wrong!} \]

When \(E \) changes, it takes time for dielectrics to polarize
- Dielectric “constant” is constant only for static/slowly-changing field

Especially true for liquid of polar molecules, e.g. water
- Molecules must rotate \(\Rightarrow \) Takes \(\sim 10^{-11} \) seconds
- \(\varepsilon \) large up to \(10^{10} \) Hz, then drops to an “ordinary” value of 1.78
- Index of refraction of water for visible light is 1.33
Ordinary Dielectrics

Inside insulators are electrons bound to atoms

- They behave as mass-spring oscillators
- EM waves drive them with \(F = -eE \)
- If the frequency \(\omega \) is close to the resonance frequency \(\omega_0 \), the electrons oscillate strongly
- They absorb the incoming waves

Typical \(\omega_0 \) for bound electrons are \(10^{15} - 10^{16} \) Hz

- In the visible to ultraviolet (UV) region
- Loosely bound electrons (small \(k \rightarrow \) small \(\omega_0 \)) make material opaque in visible light

Positively charged hydrogen atoms in molecules oscillate at lower \(\omega_0 \) because of larger \(m \)

- Microwave is absorbed by water and organic compounds

Summary

Electric susceptibility of a dielectric \(\mathbf{P} = \chi_e \mathbf{E} = \frac{\varepsilon - 1}{4\pi} \mathbf{E} \)

- At boundaries of dielectrics, \(\mathbf{E} \parallel \) is continuous, but \(\mathbf{E} \perp \) may not be

If \(\mathbf{P} \) is not uniform, bound charge \(\rho_{\text{bound}} = -\text{div} \mathbf{P} \) appears

\[
\text{div} \mathbf{E} = 4\pi (\rho_{\text{free}} + \rho_{\text{bound}}) = \frac{4\pi \rho_{\text{free}}}{\varepsilon} \quad \text{for linear, isotropic dielectric}
\]

In such a medium, Maxwell's equation is modified as:

\[
\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{\varepsilon}{c} \frac{\partial \mathbf{E}}{\partial t}
\]

- Wave solutions propagate with a reduced speed \(c/\sqrt{\varepsilon} \)
- Frequency dependence of \(\varepsilon \) makes the solutions more complex