W. J. NELLIS
Experimental Condensed Matter Physics at High Pressures

nellis@physics.harvard.edu
510-847-6821 (cell)
617-496-5144 (fax)

Associate of the Department of Physics
Harvard University
Cambridge, Massachusetts 02138

Ph.D., Iowa State University, 1968
B.S., Loyola University of Chicago, 1963




Selected Publications
Research Interests
Professional Positions
Professional Activities
Publications: Letter Journals
Publications: Journals and Conference Proceedings
Patents

Selected Publications

W. J. Nellis, “The unusual magnetic fields of Uranus and Neptune,” Mod. Phys. Lett. B 29, 1430018 (2015).

W. J. Nellis, “Dynamic high pressure: Why it makes metallic fluid hydrogen,” J. Phys. Chem. Solids (2015), http://dx.doi.org/10.1016/j.jpcs.2014.12.007

X. Liu, T. Mashimo, K. Ogata, T. Kinoshita, T. Sekine, X. Zhou, and W. J. Nellis, “Anomalous elastic-plastic transition of MgO under shock compression,” J. Appl. Phys. 114, 243511 (2013).

W. J. Nellis,"Wigner and Huntington: the long quest for metallic hydrogen," High Pressure Research, (2013) http://dx.doi.org/10.1080/08957959.2013.784907

W. J. Nellis, “Delocalization of Electrons in Strong Insulators at High Dynamic Pressures,” Materials 4, 1168 (2011).

R. Chau, S. Hamel, and W. J. Nellis, “Chemical Processes in the Deep Interior of Uranus,” (2011), NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1198

X. Zhou, Jun Li, W. J. Nellis, X. Wang, Jiabo Li, H. He, and Q. Wu, “Pressure-dependent Hugoniot Elastic Limit of Gd3Ga5O12 Single Crystals” J. Appl. Phys. 109, 083536 (2011).

W. J. Nellis, "P. W. Bridgman's Contributions to the Foundations of Shock Compression of Condensed Matter," J. Phys.: Conf. Ser. 215, 012144 (2010).

W. J. Nellis, G. I. Kanel, S. V. Razorenov, A. S. Savinykh, and A. M. Rajendran, "Entropy-Dominated Dissipation in Sapphire Shock-Compressed up to 400 GPa (4 Mbar)," J. Phys.: Conf. Ser. 215, 012148 (2010).

W. J. Nellis, "Dynamic Compression of Materials: Metallization of Fluid Hydrogen at High Pressures", Rep. Prog. Phys. 69, 1479-1580 (2006).

T. Mashimo, R. Chau, Y. Zhang, T. Kobayoshi, T. Sekine, K. Fukuoka, Y. Syono, M. Kodama, and W. J. Nellis, "Transition to a Virtually
Incompressible Oxide Phase at a Shock Pressure of 120 GPa (1.2 Mbar): Gd3Ga5O12," Phys. Rev. Lett. 96, 105504 (2006).

G. V. Boriskov, A. I. Bykov, R. I. Il'kaev, V. D. Selemir, G. V. Simakov, R. F. Trunin, V. D. Urlin, A. N. Shuikin, and W. J. Nellis, "Shock Compression of Liquid Deuterium up to 109 GPa (1.09 Mbar), Phys. Rev. B 71, 092104 (2005).

R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, "Metallization of Fluid Nitrogen and the Mott Transition in Highly Compressed Low-Z Fluids," Phys. Rev. Lett. 90, 245501 (2003).

M. Bastea, A.C. Mitchell, and W. J. Nellis, "High Pressure Insulator / Metal Transition in Molecular Oxygen" Phys. Rev. Lett. 86, 3108 (2001)

W. J. Nellis, S. T. Weir, and A. C. Mitchell, "Minimum Metallic Conductivity of Fluid Hydrogen at 140 GPa (1.4 Mbar)", Phys. Rev. B 59, 3434-3449 (1999).

W. J. Nellis, S. T. Weir, and A. C. Mitchell, "Metallization and Electrical Conductivity of Hydrogen in Jupiter," Science 273, 936 (1996).

Research interests

Measurements of physical properties at high dynamic pressures, densities, and modest temperatures. Measurements include pressure versus density, radiative temperatures, velocities of sound, electrical conductivities, and shock-wave temporal profiles to investigate compressibilities and phase transitions in liquids and solids. Pressures range from 10 to 300 GPa (0.1 to 3 million bars), densities range up to 12-fold of liquid density in the case of hydrogen, and temperatures range from 1,000 to 30,000 K depending on material and pressure. Materials include H2, He, H2O, CH4, NH3, and single-crystal Al2O3 and Gd3Ga5O12. Within this range of conditions materials are insulators, semiconductors, or metals (quantum mechanically degenerate). Perhaps, my most widely known result is the observation of metallic fluid hydrogen at 140 GPa, nine-fold-compressed initial liquid density, and 3000 K. My experiments on liquids expected in deep planetary interiors are the basis of models of interiors of giant gas and icy planets in this and other solar systems. My technique to recover solids as thin as a micron intact from shock pressures up to 100 GPa enables synthesis of metastable materials for characterization of material structures and physical properties.

Professional Positions

Argonne National Laboratory, Materials Science Division, Postdoctoral Researcher, 1968-70
Monmouth College (Illinois), Assistant Professor of Physics, 1970-73
Lawrence Livermore National Laboratory, 1973-2004:
Teller Fellow, 2000
High-Dynamic-Pressure Experimental Group, 1976-2002:
Group Leader, 1978-1981
Associate H Division Leader for Experiments, 1981-1993
Head of Center for High Pressure Sciences of the University of California Institute of Geophysics and Planetary Physics at Livermore, 1984-1994
Computational Physicist, 1973-1976
Retired from LLNL, 2004
Harvard University, Associate of Department of Physics, 2004-
Oxford University, Trinity College, Visiting Fellow, 2000
University of California, San Diego, Visiting Professor of Physics, 1989.

Professional Activities

American Physical Society:
Shock Compression Science Award, 1997
Fellow, Division of Condensed Matter Physics, 1987
Chair, Topical Group on the Shock Compression of Condensed Matter, 1987
Chair, Symposium entitled Ultracondensed Matter at High Pressures, March Meeting, Minneapolis, 2000
Co-chair, Topical Conference on Shock Compression of Condensed Matter, 1981
International Association for the Advancement of High Pressure Science and Technology (AIRAPT):
Bridgman Award, 2001
President, 2003-2007; Vice President, 1999-2003
Co-editor, Science and Technology of High Pressure (Universities Press, Hyderabad, India, 2000), the Proceedings of the 1999 AIRAPT-17 Conference.
American Geophysical Union, 1986 -
Review Committee, DOE Center for Predictive Modeling and Simulations of High-Energy Density Dynamic Response of Materials, Caltech, 2008, 2009.
Workshop, 21st Century Needs and Challenges in Compression Science, Los Alamos, 2009.
Visiting Professor, Kumamoto University, Japan, 2008.
DOE Workshop, Shock Compression and Beamline at APS, Argonne National Laboratory, 2008.
National Research Council Associates Program, Proposal Evaluation Panel, 2007-2008.
Scientific Advisory Committee, Center of Excellence, Kumamoto University, Japan, 2004 -
Scientific Advisory Committee, Center of Excellence, National Institute for Research in Inorganic Materials (NIRIM), Tsukuba, Japan, 1994-1997, 2000-2003.
Co-chair of Workshop: Future Directions of Research at High Pressure with Variable Temperature and High Magnetic Fields, San Francisco, 2001.
Organizing Committee, Materials Research Society Meeting, Boston, 1997; coeditor of proceedings: High-Pressure Materials Research.
Chair, Selection Committee for Best Thesis Research (Rosen Prize) at Los Alamos Neutron Scattering Center (LANSCE), 1997.
Co-chair, The International Conference: The Current State and Future of High Pressure Physics, Institute of High Pressure Physics, Moscow, 1995.
Chair, Workshop on Future Experiments in Condensed Matter Physics and Chemistry, Los Alamos Neutron Scattering Center (LANSE), 1995
Gordon Research Conference on Research at High Pressure: Chair, 1990; Vice Chair, 1988.
Workshop on the Physics of Condensed Matter at Planetary Pressures, International Centre for Theoretical Physics, Trieste, Italy, 1984.

Publications: Letter Journals (36)

W. J. Nellis, “The unusual magnetic fields of Uranus and Neptune,” Mod. Phys. Lett. B 29, 1430018 (2015).

R. Chau, S. Hamel, and W. J. Nellis, “Chemical Processes in the Deep Interior of Uranus,” (2011), NATURE COMMUNICATIONS | 2:203 | DOI: 10.1038/ncomms1198 |

T. Mashimo, R. Chau, Y. Zhang, T. Kobayoshi, T. Sekine, K. Fukuoka, Y. Syono, M. Kodama, and W. J. Nellis, "Transition to a Virtually Incompressible Oxide Phase at a Shock Pressure of 120 GPa (1.2 Mbar): Gd3Ga5O12," Phys. Rev. Lett. 96, 105504 (2006).

R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, "Metallization of Fluid Nitrogen and the Mott Transition in Highly Compressed Low-Z Fluids," Phys. Rev. Lett. 90, 245501 (2003).

W. J. Nellis, "Shock Compression of Deuterium near 100 GPa Pressures," Phys. Rev. Lett. 89, 165502 (2002).

Marina Bastea, Arthur C. Mitchell, and William J. Nellis, "High Pressure Insulator/Metal Transition in Molecular Fluid Oxygen," Phys. Rev. Lett. 86, 3108 (2001) (Highlight of 2001 Physics News).

W. J. Nellis, "Making Metallic Hydrogen," Scientific American, May, 84, 2000.

W. J. Nellis and S. T. Weir, "Reply to J. M. Besson's Comment on "Metallization of Fluid Molecular Hydrogen at 140 GPa (1.4 Mbar)", Phys. Rev. Lett. 78, 5027 (1997).

S. T. Weir, A. C. Mitchell, and W. J. Nellis, "Metallization of Fluid Molecular Hydrogen at 140 GPa (1.4 Mbar)," Phys. Rev. Lett. 76, 1860 (1996).

W. J. Nellis, S. T. Weir, and A. C. Mitchell, "Metallization and Electrical Conductivity of Hydrogen in Jupiter," Science 273, 936 (1996).

P. S. Fiske, W. J. Nellis, M. Lipp, H. Lorenzana, M. Kikuchi, and Y. Syono, "Pseudotachylites Generated in Shock Experiments: Implications for Impact Cratering Products and Processes," Science 270, 281 (1995).

W. J. Nellis, M. Ross, and N. C. Holmes, "Temperature Measurements of Shock-Compressed Liquid Hydrogen: Implications for the Interior of Jupiter," Science 269, 1249 (1995).

D. J. Benson and W. J. Nellis, "Dynamic Compaction of Copper Powder: Computation and Experiment," Appl. Phys. Lett. 65, 418 (1994).

A. J. Gratz, W. J. Nellis, and N. A. Hinsey, "Observations of High-Velocity, Weakly Shocked Ejecta from Experimental Impacts," Nature 363, 522 (1993).

A. J. Gratz, L. D. DeLoach, T. M. Clough, and W. J. Nellis, "Shock Amorphization of Cristobalite," Science 259, 663 (1993).

W. J. Nellis, A. C. Mitchell, P. C. McCandless, D. J. Erskine, and S. T. Weir, "Electronic Energy Gap of Molecular Hydrogen from Electrical Conductivity Measurements at High Shock Pressures," Phys. Rev. Lett. 68, 2937 (1992).

C. S. Yoo, W. J. Nellis, M. L. Sattler, and R. G. Musket, "Diamondlike Metastable Carbon Phases from Shock-Compressed C60 Films," Appl. Phys. Lett. 61, 273 (1992).

C. S. Yoo and W. J. Nellis, "Phase Transitions from C60 Molecules to Strongly Interacting C60 Agglomerates at Hydrostatic High Pressures," Chem. Phys. Lett.198, 379 (1992).

C. S. Yoo and W. J. Nellis, "Phase Transformations in Carbon Fullerenes at High Shock Pressures," Science 254, 1489 (1991).

W. B. Hubbard, W. J. Nellis, A. C. Mitchell, N. C. Holmes, S. S. Limaye, and P. C. McCandless, "Interior Structure of Neptune: Comparison with Uranus," Science 253, 648 (1991).

D. J. Erskine and W. J. Nellis, "Shock-Induced Martensitic Phase Transformation of Oriented Graphite to Diamond," Nature 349, 317 (1991).

C. L. Seaman, S. T. Weir, E. A. Early, M. B. Maple, W. J. Nellis, P. C. McCandless, and W. F. Brocious, "Crystallographically Oriented Superconducting Bi2Sr2CaCu2O8 by Shock Compaction," Appl. Phys. Lett. 57, 93 (1990).

S. T. Weir, W. J. Nellis, M. J. Kramer, C. L. Seaman, E. A. Early, and M. B. Maple, "Increase in the Flux-Pinning Energy of YBa2Cu3O7-x by Shock Compaction," Appl. Phys. Lett. 56, 2042 (1990).

W. J. Nellis, D. C. Hamilton, N. C. Holmes, H. B. Radousky, F. H. Ree, A. C. Mitchell, and M. Nicol, "The Nature of the Interior of Uranus Based on Studies of Planetary Ices at High Dynamic Pressure," Science, 240, 779 (1988).

W. J. Nellis, J. A. Moriarty, A. C. Mitchell, M. Ross, R. G. Dandrea, N. W. Ashcroft, N. C. Holmes, and R. G. Gathers, "Metals Physics at Ultrahigh Pressure: Aluminum, Copper, and Lead as Prototypes," Phys. Rev. Lett. 60, 1414 (1988).

H. B. Radousky, W. J. Nellis, M. Ross, D. C. Hamilton, and A. C. Mitchell, "Molecular Dissociation and Shock-Induced Cooling in Fluid Nitrogen at High Densities and Temperatures," Phys. Rev. Lett. 57, 2419 (1986).

W. J. Nellis, H. B. Radousky, T. H. Geballe, R. H. Hammond, R. Koch, and G. W. Hull, Jr., "Superconductivity of Nb Films Recovered from Megabar Dynamic Pressures," Appl. Phys. Lett. 49, 413 (1986).

E. Knittle, R. Jeanloz, A. C. Mitchell, and W. J. Nellis, "Metallization of Fe0.94O at Elevated Pressures and Temperatures Observed by Shock-Wave Electrical Resistivity Measurements," Solid State Commun. 59, 513 (1986).

N. C. Holmes, W. J. Nellis, W. B. Graham, and G. E. Walrafen, "Spontaneous Raman Scattering From Shocked Water," Phys. Rev. Lett. 55, 2433 (1985).

W. J. Nellis, N. C. Holmes, A. C. Mitchell, and M. van Thiel, "Phase Transition in Fluid Nitrogen at High Densities and Temperatures," Phys. Rev. Lett. 53, 1661 (1984).

W. J. Nellis, N. C. Holmes, A. C. Mitchell, R. J. Trainor, G. K. Governo, M. Ross, and D. A. Young, "Shock Compression of Liquid Helium to 56 GPa (560 kbar)," Phys. Rev. Lett. 53, 1248 (1984).

N. C. Holmes, H. B. Radousky, M. J. Moss, and W. J. Nellis, "Silica at Ultrahigh Temperature and Expanded Volume," Appl. Phys. Lett. 45, 626 (1984).

W. J. Nellis, M. van Thiel, and A. C. Mitchell, "The Shock Compression of Liquid Xenon to 130 GPa (1.3 Mbar)," Phys. Rev. Lett. 48, 816 (1982).

M. Ross, W. Nellis, and A. Mitchell, "Shock-Wave Compression of Liquid Argon to 910 kbar," Chem. Phys. Lett. 68, 532 (1979).

W. J. Nellis, "The Effect of Self-Radiation on Crystal Volume," Inorg. Nucl. Chem. Letters 13, 393 (1977).

W. J. Nellis and M. B. Brodsky, "Magnetic Plutonium Impurities in Palladium," Phys. Letters 32A, 267 (1970).

Publications: Journals and Conference Proceedings (110)

W. J. Nellis, “Dynamic high pressure: Why it makes metallic fluid hydrogen,” J. Phys. Chem. Solids (2015), http://dx.doi.org/10.1016/j.jpcs.2014.12.007

X. Liu, K. Ogata, X. M. Zhou, W.J. Nellis, T. Sekine, and T. Mashimo, “Anisotropic Hugoniot elastic limit of MgO,” J. Phys.: Conf. Ser. 500, 062004 (2014).

X. Liu, T. Mashimo, K. Ogata, T. Kinoshita, T. Sekine, X. Zhou, and W. J. Nellis, “Anomalous elastic-plastic transition of MgO under shock compression,” J. Appl. Phys. 114, 243511 (2013).

W. J. Nellis,"Wigner and Huntington: the long quest for metallic hydrogen," High Pressure Research, (2013) http://dx.doi.org/10.1080/08957959.2013.784907

W. J. Nellis, “Delocalization of Electrons in Strong Insulators at High Dynamic Pressures,” Materials 4, 1168 (2011).

W. J. Nellis, “Metallic Liquid Hydrogen and Likely Al2O3 Metallic Glass,” European Physics Journal: Special Topics 196, 121 (2011).

R. Chau, S. Hamel, and W. J. Nellis, “Chemical Processes in the Deep Interior of Uranus,” (2011), NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1198

X. Zhou, Jun Li, W. J. Nellis, X. Wang, Jiabo Li, H. He, and Q. Wu, “Pressure-dependent Hugoniot Elastic Limit of Gd3Ga5O12 Single Crystals” J. Appl. Phys. 109, 083536 (2011).

W. J. Nellis, "Al2O3 as a metallic glass at 300 GPa," Phys. Rev. B 82, 092101 (2010).

W. J. Nellis, "P. W. Bridgman's Contributions to the Foundations of Shock Compression of Condensed Matter," J. Phys.: Conf. Ser. 215, 012144 (2010).

W. J. Nellis, G. I. Kanel, S. V. Razorenov, A. S. Savinykh, and A. M. Rajendran, "Entropy-Dominated Dissipation in Sapphire Shock-Compressed up to 400 GPa (4 Mbar)," J. Phys.: Conf. Ser. 215, 012148 (2010).

G. I. Kanel, W. J. Nellis, A. S. Savinykh, S. V. Razorenov, and A. M. Rajendran, "Response of Seven Crystallographic Orientations of Sapphire Crystals to Shock Stresses of 16-86 GPa," J. Appl. Phys. 106, 043524 (2009).

W. J. Nellis, "Systematics of Compression of Hard Materials," J. Phys.: Conf. Proc. 121, 062005 (2008)

W. J. Nellis and D. Dlott, "Town Hall Meeting: Future Directions in Dynamic High Pressure Research," in Shock Compression of Condensed Matter-2007, edited by M. Elert, M. Furnish, R. Chau, N. Holmes, and J. Nguyen (American Institute of Physics, Melville, 2007) p. 12-16.

W. J. Nellis, "Adiabat-Reduced Isotherms at 100 GPa Pressures," High Pressure Research 27, 393 (2007).

W. J. Nellis, "Discovery of Metallic Fluid Hydrogen at 140 GPa and Ten-Fold Compressed Liquid Density," Review of High Pressure Science and Technology (Japan) 17, 328-333 (2007).

W. J. Nellis, "Dynamic Compression of Materials: Metallization of Fluid Hydrogen at High Pressures", Rep. Prog. Phys. 69, 1479-1580 (2006).

W. J. Nellis, "Sensitivity and Accuracy of Hugoniot Measurements at Ultrahigh Pressures," in Shock Compression of Condensed Matter-2005, edited by M. D. Furnish, M. E. Elert, T. P. Russell, and C. T. White (American Institute of Physics, Melville, 2006) p. 115.

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, "The Ruby Pressure Standard to 150 GPa," J. Appl. Phys. 98, 114905 (2005).

A. D. Chijioke, W. J. Nellis, and I. F. Silvera, "High Pressure Equations of State of Al, Cu, Ta, and W," J. Appl. Phys. 98, 073526 (2005).

G. V. Boriskov, A. I. Bykov, R. I. Il'kaev, V. D. Selemir, G. V. Simakov, R. F. Trunin, V. D. Urlin, A. N. Shuikin, and W. J. Nellis, "Shock Compression of Liquid Deuterium up to 109 GPa (1.09 Mbar), Phys. Rev. B 71, 092104 (2005).

W. J. Nellis, "Dynamic Compression of Rare Gases and Deuterium," Contrib. Plasma Phys. 45, 243 (2005).

W. J. Nellis, "High Pressure Effects in Supercritical Rare-Gas Fluids," in Electronic Excitations in Liquified Rare Gases, edited by W. F. Schmidt and E. Illenberger (American Scientific Publishers, 2005), pp. 29-50.

W. J. Nellis, "Shock Compression of a Free-electron Gas," J. Appl. Phys. 94, 272 (2003).

W. J. Nellis, A. C. Mitchell, and D. A. Young, "Equation-of-State Measurements for Aluminum, Copper, and Tantalum in the Pressure Range 80 to 440 GPa (0.8 to 4.4 Mbar)," J. Appl. Phys. 93, 304 ( 2003).

W. J. Nellis, "Metallization and Dissociation of Fluid Hydrogen and Other Diatomics at 100 GPa Pressures," Proceedings of the Third International Sakharov Conference on Physics, edited by A. Semikhatov, M. Vasiliev, and V. Zaikin (Scientific World, 2003), pp. 142-151.

W. J. Nellis, "High Dynamic Pressures and Modest Temperatures: A Broad Perspective and Bridging the Gap," J. Phys.: Condens. Matter 14, 11045 (2002) (Proceedings of Eighteenth AIRAPT Conference).

W. J. Nellis, A. C. Mitchell, and A. K. McMahan, "Carbon at Pressures in the Range 0.1 to 1 TPa (10 Mbar)," J. Appl. Phys. 90, 696 (2001).

W. J. Nellis, D. C. Hamilton, and A. C. Mitchell, "Electrical Conductivities of Methane, Benzene, and Polybutene Shock Compressed to 60 GPa (600 kbar), J. Chem. Phys. 115, 1015 (2001).

W. J. Nellis, "Historical Background of Ultrahigh Pressure Shock Compression Experiments at LLNL: 1973 to 2000," Lawrence Livermore National Laboratory Report UCRL-ID-140923, October, 2000. This paper is on the Web as part of the U.S. Department of Energy's DOE Information Bridge at www.osti.gov/servlets/purl/792708-Rc3nES/native/. It is also on a public site, which requires no registration or password: www.osti.gov/bridge.

R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, "Electrical Conductivity of Water Compressed Dynamically to Pressures of 70-180 GPa (0.7-1.8 Mbar)," J. Chem. Phys. 114, 1361 (2001).

S. M. Pollaine and W. J. Nellis, "Laser-Generated Metallic Hydrogen," in Science and Technology of High Pressure, edited by M. H. Manghnani, W. J. Nellis, and M. F. Nicol (Universities Press, Hyderabad, 2000), pp. 210-211.

W. J. Nellis, "Metallization of Fluid Hydrogen at 140 GPa (1.4 Mbar): implications for Jupiter," J. Planet. Space Sciences 48, 671 (2000).

W. J. Nellis, "Metastable Solid Metallic Hydrogen," Philos. Mag. B 79, 655-661 (1999) (This report is currently available in full text on the World Wide Web. It has been included in the Department of Energy's <http://www.osti.gov/bridge>Information Bridge, which offers online public access to DOE's vast collection of R&D reports.)

W. J. Nellis, S. T. Weir, and A. C. Mitchell, "Minimum Metallic Conductivity of Fluid Hydrogen at 140 GPa (1.4 Mbar)", Phys. Rev. B 59, 3434-3449 (1999).

W. J. Nellis, S. T. Weir, and A. C. Mitchell, "Metallization of Fluid Hydrogen at 140 GPa (1.4 Mbar)", in Strongly Coupled Coulomb Systems, edited by G. J. Kalman, J. M. Rommel and K. Blagoev (Plenum Press, New York, 1998), pp. 25-32.

P. S. Fiske, W. J. Nellis, Z. Xu, and J. F. Stebbins, "Shocked Quartz: A 29Si Magic-angle-spinning Nuclear Magnetic Resonance Study," Am. Miner. 83, 1285 (1998).

W. J. Nellis and A. C. Mitchell, "Molecular and Planetary Fluids at High Shock Pressures," in Shock Compression of Condensed Matter - 97, edited by S. C. Schmidt, D. P. Dandekar, and J. W. Forbes (American Institute of Physics, Woodbury, New York, 1998), pp. 13-19 (on receiving the 1997 Shock-Wave Science Award).

N. C. Holmes, W. J. Nellis, and M. Ross, "Sound Velocities in Shocked Liquid Deuterium," in Shock Compression of Condensed Matter - 1997, edited by S. C. Schmidt, D. P. Dandekar, and J. W. Forbes (American Institute of Physics, Woodbury, New York, 1998), pp. 61-64.

W. J. Nellis, A. A. Louis, and N. W. Ashcroft, "Metallization of Fluid Hydrogen," Phil. Trans. R. Soc. Lond. A 356, 119 (1998).

W. J. Nellis, N. C. Holmes, A. C. Mitchell, D. C. Hamilton, and M. Nicol, "Equation of State and Electrical Conductivity of "Synthetic Uranus," a Mixture of Water, Ammonia, and Isopropanol, at Shock Pressure up to 200 GPa (2 Mbar)," J. Chem. Phys. 107, 9096 (1997).

W. J. Nellis, J. A. Moriarty, A. C. Mitchell, and N. C. Holmes, "Equation-of-State of Beryllium at Shock Pressures of 0.4-1.1 TPa," J. Appl. Phys. 82, 2225 (1997).

W. J. Nellis, "Dynamic High Pressure Effects in Solids," Encyclopedia of Applied Physics 18, 541 (1997).

S. T. Weir, A. C. Mitchell, and W. J. Nellis, "Electrical Resistivity of Single-Crystal Al2O3 Shock-Compressed in the Pressure Range 91-220 GPa (0.91-2.20 Mbar), J. Appl. Phys. 80, 1522 (1996).

R. Chau, M. B. Maple, and W. J. Nellis, "Shock Compaction of SmCo Particles," J. Appl. Phys. 79, 9236 (1996).

T. G. Nieh, P. Luo, W. Nellis, D. Leseur, and D. Benson, "Dynamic Compaction of Aluminum Nanocrystals," Acta Mater. 44, 3781 (1996).

N. C. Holmes, W. J. Nellis, and M. Ross,"Temperature Measurements and Dissociation of Shock-Compressed Liquid Deuterium and Hydrogen," Phys. Rev. B52, 15,835 (1995).

J. Freim, J. McKittrick, W. J. Nellis, and J. D. Katz, "Development of Novel Microstructures in Zirconia-Toughened Alumina Using Rapid Solidification and Shock Compaction," J. Mater. Res. 11, 110 (1996).

J. Freim, J. McKittrick, and W. J. Nellis, "Densification Behavior of Dynamically Shock Compacted Al2O3/ZrO2 Powders Synthesized through Rapid Solidification," Metallurgical and Materials Transactions A 26A, 2503 (1995).

M. J. Kramer, R. W. McCallum, W. J. Nellis, and U. Balachandran, "Effects of Shock-Induced Defect Density on Flux Pinning in Melt-Textured YBa2Cu3O7-d," J. Electronic Materials 23, 1111 (1995).

D. Erskine, W. J. Nellis, and S. T. Weir, "Shock Wave Profile Study of Tuff from the Nevada Test Site," J. Geophys. Res. 99, 15,529 (1994).

M. J. Kramer, R. W. McCallum, W. J. Nellis, and U. Balachandran, "Effects of Shock-Induced Defects and Subsequent Heat Treatment on Flux Pinning in Melt-Textured YBa2Cu3O7-d," Physica C 228, 265 (1994).

B. Tunaboylu, J. McKittrick, W. J. Nellis, and S. R. Nutt, "Shock Compaction of Al2O3-ZrO2 Compositions," J. Am. Ceram. Soc. 77, 1605 (1994).

P. Cordier, A. J. Gratz, J. C. Doukhan, and W. J. Nellis,"Microstructures of AlPO4 Subjected to High Shock Pressures," Phys. Chem. Minerals 21, 133 (1994).

W. J. Nellis, S. T. Weir, N. A. Hinsey, U. Baluchandran, M. J. Kramer, and R. Raman, "Disks of YBa2Cu3O7 Shocked to 10 GPa Pressures," in High-Pressure Science and Technology-1993, edited by S. C. Schmidt, J. W. Shaner, G. A. Samara, and M. Ross (American Institute of Physics, New York, 1994), pp. 695-697.

W. J. Nellis and A. J. Gratz, "Recovery of Materials Impacted at High Velocity," Int. J. Impact. Engng. 14, 531 (1993).

M. Chandramouli, G. Thomas, and W. J. Nellis, "Shock Compaction of Fe-Nd-B", J. Appl. Phys. 73, 6494 (1993).

A. J. Gratz, W. J. Nellis, J. M. Christie, W. Brocious, J. Swegle, and P. Cordier, "Shock Metamorphism of Quartz with Ambient Temperatures of -170 to +1000o C," Phys. Chem. Min. 19, 267-288 (1992).

D. J. Erskine and W. J. Nellis, "Shock-Induced Martensitic Transformation of Highly Oriented Graphite to Diamond," J. Appl. Phys. 71, 4882 (1992).

W. J. Nellis, A. C. Mitchell, F. H. Ree, M. Ross, N. C. Holmes, R. J. Trainor, and D. J. Erskine, "Equation of State of Shock-Compressed Liquids: Carbon Dioxide and Air," J. Chem. Phys. 95, 5268 (1991).

S. T. Weir, W. J. Nellis, C. L. Seaman, E. A. Early, M. B. Maple, M. Kikuchi, and Y. Syono, "Shock Consolidation of Crystallographically Aligned Bi2Sr2CaCu2O8 Powders," Physica C 184, 1 (1991).

W. J. Nellis, H. B. Radousky, D. C. Hamilton, A. C. Mitchell, N. C. Holmes, K. B. Christianson, and M. van Thiel, "Equation-of-State, Shock-Temperature, and Electrical-Conductivity Data of Dense Fluid Nitrogen in the Region of the Dissociative Phase Transition," J. Chem. Phys. 94, 2244 (1991).

S. T. Weir, W. J. Nellis, Y. Dalichaouch, B. W. Lee, M. B. Maple, J. Z. Liu, and R. N. Shelton, "Evidence for a Time-Dependent Crossover from Surfacelike to Bulklike Flux Relaxation in YBa2Cu3O7-d," Phys. Rev. B 43, 3034 (1991).

A. C. Mitchell, W. J. Nellis, J. A. Moriarty, R. A. Heinle, N. C. Holmes, R. E. Tipton, and G. W. Repp, "Equation of State of Al, Cu, Mo, and Pb at Shock Pressures up to 2.4 TPa (24 Mbar)," J. Appl. Phys. 69, 2981 (1991).

H. B. Radousky, A. C. Mitchell, and W. J. Nellis, "Shock Temperature Measurements of Planetary Ices: NH3, CH4, and "synthetic Uranus," J. Chem. Phys. 93, 8235 (1990).

W. J. Nellis and C. S. Yoo, "Issues Concerning Shock Temperature Measurements of Iron and Other Metals," J. Geophys. Res. 95, 21749 (1990).

R. Koch, W. J. Nellis, J. W. Hunter, H. Davidson, and T. H. Geballe, "Microstructures of Nb Films Recovered from Megabar Dynamic Pressures," Pract. Met. 27, 391 (1990).

M. J. Kramer, L. S. Chumbley, R. W. McCallum, W. J. Nellis, S. T. Weir, and E. P. Kvam, "Deformation Induced Defects in ReBa2Cu3O7-x by Shock Compaction," Physica C 166, 115 (1990).

N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, "The Equation of State of Platinum to 660 GPa (6.6 Mbar)," J. Appl. Phys. 66, 2962-2967 (1989).

W. J. Nellis, C. L. Seaman, M. B. Maple, E. A. Early, J. B. Holt, M. Kamegai, G. S. Smith, D. G. Hinks, and B. Dabrowski, "Shock Compaction of YBa2Cu3O7-x and HoBa2Cu3O7-x Powders in a Metal Matrix," in High Temperature Superconducting Compounds: Processing and Related Properties, edited by J. Whang and A. DasGupta (TMS Publications, Warrendale, PA, 1989), pp. 249-264.

J. J. Neumeier, W. J. Nellis, M. B. Maple, M. S. Torikachvili, K. N. Yang, J. M. Ferreira, L. T. Summers, J. I. Miller, and B. C. Sales, "Metastable A15 Phase Nb3Si Synthesized by High Dynamic Pressure," High Press. Res. 1, 267 (1989).

W. J. Nellis and L. D. Woolf, "Novel Preparation Methods for High-Tc Oxide Superconductors," MRS Bulletin 14, 63 (1989).

W. J. Nellis, M. B. Maple, and T. H. Geballe, "Synthesis of Metastable Superconductors by High Dynamic Pressure," in SPIE Vol. 878 Multifunctional Materials, edited by R. L. Gunshor (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1988), pp. 2-9.

D. C. Hamilton, A. C. Mitchell, F. H. Ree, and W. J. Nellis, "Equation of State of 1-Butene Shocked to 54 GPa (540 kbars)," J. Chem. Phys. 88, 7706 (1988).

D. C. Hamilton, W. J. Nellis, A. C. Mitchell, F. H. Ree, and M. van Thiel, "Electrical Conductivity and Equation of State of Shock Compressed Liquid Oxygen," J. Chem. Phys. 88, 5042 (1988).

W. J. Nellis, "Shock-Compression Ultrapressure Research," Scripta Met. 22, 121 (1988).

W. J. Nellis, M. B. Maple, and T. H. Geballe, "Synthesis of Metastable Materials by High Dynamic Pressures," in Communications on the Materials Science and Engineering Study (Materials Research Society, Pittsburgh, 1986), pp. 25-28.

W. J. Nellis, D. C. Hamilton, R. J. Trainor, H. B. Radousky, A. C. Mitchell, and N. C. Holmes, "Fluids at High Dynamic Pressures and Temperatures," Physica 139 and 140B, 565 (1986).

R. S. Hawke, W. J. Nellis, G. H. Newman, J. Rego, and A. R. Susoeff, "Summary of EM Launcher Experiments Performed at LLNL," IEEE Trans. on Magnetics MAG-22, 1510 (1986).

W. J. Nellis, W. C. Moss, H. B. Radousky, A. C. Mitchell, L. T. Summers, E. N. Dalder, M. B. Maple, and M. McElfresh," Superconducting Critical Temperatures of Niobium Recovered From Megabar Dynamic Pressures," Physica 135B, 240 (1985).

G. E. Walrafen, M. S. Hokmabadi, N. C. Holmes, W. J. Nellis, and S. Henning," Raman Spectrum and Structure of Silica Aerogel," J. Chem. Phys. 82, 2472 (1985).

H. B. Radousky, M. Ross, A. C. Mitchell, and W. J. Nellis, "Shock Temperatures and Melting in CsI," Phys. Rev. B 31, 1457 (1985).

W. J. Nellis, F. H. Ree, R. J. Trainor, A. C. Mitchell, and M. B. Boslough, "Equation of State and Optical Luminosity of Benzene, Polybutene, and Polyethylene Shocked to 210 GPa (2.1 Mbar)," J. Chem. Phys. 80, 2789 (1984).

R. S. Hawke, W. J. Nellis, J. Rego, A. R. Susoeff, and G. H. Newman, "Rail Accelerator Development for Ultra-High Pressure Research," IEEE Trans. Magnetics, MAG-20, 291 (1984).

W. J. Nellis, A. C. Mitchell, M. van Thiel, G. J. Devine, R. J. Trainor, and N. Brown "Equation-of-State Data for Molecular Hydrogen and Deuterium at Shock Pressures in the Range 2-76 GPa (20-760 kbar)," J. Chem. Phys., 79, 1480 (1983).

A. C. Mitchell and W. J. Nellis, "Equation of State and Electrical Conductivity of Water and Ammonia Shocked to the 100 GPa (1 Mbar) Pressure Range," J. Chem. Phys. 76, 6273 (1982).

G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, "The Temperature of Shock-Compressed Water," J. Chem. Phys. 76, 6282 (1982).

A. C. Mitchell and W. J. Nellis, "Diagnostic System of the Lawrence Livermore National Laboratory Two-Stage Light-Gas Gun," Rev. Sci. Instrum. 52, 347 (1981).

A. C. Mitchell and W. J. Nellis, "Shock Compression of Aluminum, Copper, and Tantalum," J. Appl. Phys. 52, 3363 (1981).

W. J. Nellis, F. H. Ree, M. van Thiel, and A. C. Mitchell, "Shock Compression of Liquid Carbon Monoxide and Methane to 90 GPa (900 kbar)," J. Chem. Phys. 75, 3055 (1981).

M. Ross, H. C. Graboske, Jr., and W. J. Nellis, "Equation of State Experiments and Theory Relevant to Planetary Modelling," Phil. Trans. R. Soc. Lond. A 303, 303 (1981).

W. J. Nellis and A. C. Mitchell, "Shock Compression of Liquid Argon, Nitrogen, and Oxygen," J. Chem. Phys. 73, 6137 (1980).

W. J. Nellis, A. C. Mitchell, M. Ross, and M. van Thiel, "Shock Compression of Liquid Methane and the Principle of Corresponding States," in High Pressure Science and Technology, Vol. 2, edited by B. Vodar and Ph. Marteau (Pergamon, Oxford, 1980), pp. 1043-1047.

W. J. Nellis, "The Effect of Self-radiation on Crystal Volume, " Inorg. Nucl. Chem. Letters 13, 393 (1977).

W. J. Nellis, "Slowing-Down Distances and Times of 0.1-to-14 MeV Neutrons in Hydrogenous Materials," Am. J. Phys. 45, 445 (1977).

W. J. Nellis and M. B. Brodsky, "Magnetic Properties," in The Actinides: Electronic Structure and Related Properties, Vol. 2, edited by A. J. Freeman and J. B. Darby, Jr. (Academic, New York, 1974), pp. 265-288.

M. B. Brodsky, A. J. Arko, A. R. Harvey, and W. J. Nellis, "Transport Properties," ibid., pp. 185-264.

W. J. Nellis, A. R. Harvey, G. H. Lander, B. D. Dunlap, M. B. Brodsky, M. H. Mueller, J. F. Reddy, and G. R. Davidson, "Magnetic Properties of NpPd3 and PuPd3 Intermetallic Compounds," Phys. Rev. B 9, 1041 (1974).

A. R. Harvey, M. B. Brodsky and W. J. Nellis, "Electrical and Magnetic Properties of Some Cubic Intermetallic Compounds of Plutonium with Ru, Rh, Ir, Pd, and Pt," Phys. Rev. B 7, 4137 (1973).

W. J. Nellis, A. R. Harvey, and M. B. Brodsky, "Stabilization of the 5f Energy Band in Actinide-Rh3 Intermetallic Compounds," in Magnetism and Magnetic Materials-1972, edited by C. D. Graham and J. J. Rhyne (American Institute of Physics, New York, 1973), pp. 1076-1080.

W. J. Nellis and M. B. Brodsky, "Magnetic Properties of Some Cubic Intermetallic Compounds of Plutonium with Ru, Rh, Pd, Ir, and Pt," in Magnetism and Magnetic Materials-1971, edited by C. D. Graham and J. J. Rhyne (American Institute of Physics, New York, 1972), pp. 1483-1487.

W. J. Nellis, A. E. Dwight, and H. W. Knott, "Crystal Data on Two Phases of NpPd3," J. Appl. Cryst. 5, 306 (1972).

A. J. Arko, M. B. Brodsky, and W. J. Nellis, "Spin Fluctuations in Plutonium and Other Actinide Metals and Compounds," Phys. Rev. B 5, 4564 (1972).

W. J. Nellis and M. B. Brodsky, "5f Magnetism in Palladium-Actinide Solid Solutions," Phys. Rev. B 4, 1594 (1971).

W. J. Nellis and M. B. Brodsky, "Virtual-Bound-State Formation in Pd-U Alloys," Phys. Rev. B 2, 4590 (1970).

W. J. Nellis and M. B. Brodsky, "Magnetism in Palladium-Actinide Alloys," in Plutonium 1970 and Other Actinides, edited by W. N. Miner (Metallurgical Society of the American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1970), pp. 346-354.

W. J. Nellis and M. B. Brodsky, "Resistivity Minima in Pd(Np) Alloys," J. Appl. Phys. 41, 1007 (1970).

W. J. Nellis and S. Legvold, "Thermal Conductivities and Lorenz Functions of Gadolinium, Terbium, and Holmium Single Crystals," Phys. Rev. 180, 581 (1969).

W. J. Nellis and S. Legvold, "Resistivity Anomalies in Gadolinium," J. Appl. Phys. 40, 2267 (1969).

W. J. Nellis and B. C. Carlson, "Reduction and Evaluation of Elliptic Integrals," Mathematics of Computation 20, 223 (1966).

Patents

1. W. J. Nellis, T. H. Geballe, and M. B. Maple, "Dynamic High Pressure Process for Fabricating Superconducting and Permanent Magnetic Materials," U.S. Pat. 4,717,627, January 5, 1988.
2. W. J. Nellis, M. B. Maple, and T. H. Geballe, "Dynamic High Pressure Process for Fabricating Superconducting and Permanent Magnetic Material," U.S. Pat. 4,762,754, August 9, 1988; Reexamination Certificate B1 4,762,754, October 15, 1991. (Note: This is the first U. S. patent issued for high-temperature oxide superconductors).
3. W. J. Nellis, T. H. Geballe, and M. B. Maple, "Dynamic High Pressure Process for Fabricating Superconducting and Permanent Magnetic Materials," U. S. Pat. 4,907,731, March 13, 1990.
4. W. J. Nellis and M. B. Maple, "The Mechanical Alignment of Particles for use in Fabricating Superconducting and Permanent Magentic Materials," U. S. Pat. 5,112,801, May 12, 1992.
5. W. J. Nellis and M. B. Maple, "A Method of Improving Superconducting Qualities of Fabricated Constructs by Shock Processing of Precursor Materials," U. S. Pat. 5,158,930, October 27, 1992.

(01/28/15)