THE INSIDE OF A JET

Matthew Schwartz
Harvard University
A dijet event from atlas
A multijet event
What is a jet?

PETRA (DESY) 1979
First 3 jet event
What is a jet?

- Quarks and gluons (partons) are produced at **short distance**, where QCD is weak.
- Partons radiate and fragment into **stable hadrons** at **long distance**.
- No interference between **short** and **long** distances.

Factorization

\[d\sigma = [\text{production}] \times [\text{hadronization}] \]

Short distance physics (e.g. supersymmetry) imprinted on **jets**!

Can calculate separately.
What is a jet?

Cross section for producing an a gluon is dominated by small angles.

\[d\sigma \approx \alpha_s \frac{dE}{E} \frac{d\theta}{\theta} \]

- Small \(E \) \(\rightarrow \) Soft divergence
- Small angle \(\rightarrow \) collinear divergence

Interference is subleading in the collinear limit (semi-classical) probability for emission.
Parton shower

Jet production is well-described by **semi-classical parton shower** picture

- Quark starts out off-shell at short distances \(\sim 10^{-3} \text{ fm} \)
- As it moves out, has **probability for emission**
- When it gets \(\sim 1 \text{ fm} \) away, shower stops and **hadronization occurs**
Jet to Parton map

Short distance process produces **quarks**

We observe **jets**:

Can we **invert**?
How do we study jets

Jets are not well defined. Many different jet algorithms
• Cone algorithms
• Cluster algorithms
• Global algorithms (event shapes)
• …

Radiation is assigned to jets differently
Iterative jet algorithms

- Start with input 4-vectors
 - e.g. stable particles, topoclusters, calorimeter cells, etc.

- **Calculate** the pairwise distance

\[R_{ij} = \sqrt{(\theta_i - \theta_j)^2 + (\eta_i - \eta_j)^2} \]
Iterative jet algorithms

- Start with input 4-vectors
 - e.g. stable particles, topoclusters, calorimiter cells, etc.

- **Calculate** the pairwise distances

 \[R_{ij} = \sqrt{(\theta_i - \theta_j)^2 + (\eta_i - \eta_j)^2} \]

- **Merge** the two closest particles
Iterative jet algorithms

• Start with input 4-vectors
 • e.g. stable particles, topoclusters, calorimiter cells, etc.

• **Calculate** the pairwise distance

\[R_{ij} = \sqrt{(\theta_i - \theta_j)^2 + (\eta_i - \eta_j)^2} \]

• **Merge** the two closest particles
• **Repeat** until no two particles are closer than R
Iterative jet algorithms

• Start with input 4-vectors
 • e.g. stable particles, topoclusters, calorimeter cells, etc.

• Calculate the pairwise distance

\[R_{ij} = \sqrt{(\theta_i - \theta_j)^2 + (\eta_i - \eta_j)^2} \]

• Merge the two closest particles
• Repeat until no two particles are closer than \(R \)
Different distance measures

* k_T algorithm

\[d_{ij} = \min(p_{T_i}^2, p_{T_j}^2) \left(\frac{\Delta R}{R_0} \right)^2, \quad d_{iB} = p_{T_i}^2 \]

* C/A algorithm

\[d_{ij} = \left(\frac{\Delta R}{R_0} \right)^2, \quad d_{iB} = 1 \]

* anti-k_T algorithm

\[d_{ij} = \min(p_{T_i}^{-2}, p_{T_j}^{-2}) \left(\frac{\Delta R}{R_0} \right)^2, \quad d_{iB} = p_{T_i}^{-2} \]

Can be thought of as **inversions** of different **parton showers**
Summary so far

- Existence of **jets** comes from **collinear singularities** in QCD
- In collinear limit, interference is unimportant and **semi-classical picture** applies
- **Parton showers** use a semi-classical Markov process to **simulate** QCD
- **Jet algorithms** attempt to invert the **parton-to-jet mapping**

• This is a great first approximation, but **reality** is much more interesting
Real events are complicated!!

Radiation from other jets and underlying event complicates jet reconstruction

Image taken from R. Teuscher
Beyond the first approximation

- Contamination from underlying event/other jets
 - Parton-shower is *not invertible*

- Jet = parton worked great at LEP and Tevatron
 - At LHC, detectors are so good, we can look inside jets

- **Interference** is sometimes important
 - Critical for measuring Color correlations of jets

- Last few years have seen many qualitatively new ways of thinking about jets
Different algorithms, different results

e.g. reconstruct W invariant mass

\[W \rightarrow \bar{q}q \]
Parton shower is not invertible

Parton shower gives an event

What is the inverse?
All of them! -- Qjets

- **Add randomness** into the jet algorithm
 - Instead of choosing smallest d_{ij}, choose pair with a probability

\[P \propto \exp(-\alpha d_{ij}) \]

- Generates ensemble of trees for each event
What did we do with the Qjets?

As an example, we can **prune** them

- Pruning **discards** radiation in clustering that is **soft but not collinear**

\[z_{ij} \equiv \frac{\min(pT_i, pT_j)}{|pT_i + pT_j|} \quad < \quad z_{cut} \quad \Delta R_{ij} > D_{cut} \]

Other variants **filtering** or **trimming** work similarly

W jet mass with pruned Qjets

This is one event
Distributions become much smoother

The same 100 events
Need fewer events for same precision

For example,
- Take 10 boosted W events \((p_T > 500) \)
- Construct jet mass
- Look at \textit{variance} of the \textit{mean} W-jet mass over many pseudo-experiments

\begin{table}
\begin{tabular}{|c|c|c|}
\hline
Algorithm & Mass uncertainty & Relative Luminosity required \\
\hline
\(k_T \) & 3.15 GeV & 1.00 \\
Qjets \(\alpha = 0 \) & 2.20 GeV & 0.50 \\
Qjets \(\alpha = 0.001 \) & 2.04 GeV & 0.45 \\
\hline
\end{tabular}
\end{table}

\textbf{Qjets} needs \textit{half as much luminosity} as conventional jet algorithms
we call the trees constructed in this non-deterministic runed etmass

The idea we have described – associating a weighted tree (essentially) every time. Note that any algorithm simply repeated a number of times, yielding a di

classicalwithCA
Tclassicalwithka
~ 0.01

with this analogy, approach, and the traditional, single tree algorithm as the "classical" always chosen. In this sense, it is helpful to think of

d

with this metric, our algorithm reduces to a traditional over all pairs at this stage in the clustering. Note that

where

e.g.

Here, rigidity parametrized by a continuous real number demonstrated below.

Approximations to such weighted distributions obtained using every tree can be captured through a procedure analogous to Monte-Carlo integration, allowing us to use a series of 2

assocting a weighted set of final state four-momenta in a jet. Fortunately, good

Qjets can have important e

&dquo;

signal&dquo;

Volatility

\[\nu = \frac{\Gamma}{\langle m \rangle} \]

is a purely Q-observable

Signal vs background

QCD jets (one event)

W jets (one event)
Volatility \[\nu = \frac{\Gamma}{\langle m \rangle} \]

QCD jets are broader than boosted W jets

<table>
<thead>
<tr>
<th>htemp</th>
<th>Entries</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8077</td>
<td>0.08093</td>
<td>0.07891</td>
</tr>
</tbody>
</table>
Volatility

\[\nu = \frac{\Gamma}{\langle m \rangle} \]

QCD jets are broader than boosted W jets

\[\alpha = 0.01 \]

- W-Jets
- QCD-Jets
W-tagging: cut on volatility

\[
\frac{\epsilon_S}{\sqrt{\epsilon_B}}
\]

SIC_from_TMVA

Qjets+n-subjettiness

Qjets

n-subjettiness

pruning
Qjets on dijet events (no pruning)

\[\alpha = 100 \]

(classical anti-kT)

Work in progress, with D. Krohn and D. Kahawala
Qjets on dijet events (no pruning)

\[\alpha = 10 \]

Work in progress, with D. Krohn and D. Kahawala
Qjets on dijet events (no pruning)

\[\alpha = 1 \]

Work in progress, with D. Krohn and D. Kahawala
Qjets on dijet events (no pruning)

Work in progress, with D. Krohn and D. Kahawala
Qjets on dijet events (no pruning)

$\alpha = 0.01$

Work in progress, with D. Krohn and D. Kahawala
Qjets on dijet events (no pruning)

\[\alpha = 0.001 \]

Work in progress, with D. Krohn and D. Kahawala
Qjets on dijet events (no pruning)

\[\alpha = 0.001 \]

May help resolve ambiguities with overlapping jets

Work in progress, with D. Krohn and D. Kahawala
Summary of Qjets

- **Parton shower** is not invertible: Jet-to-parton map is not unique
 - Why always pick the most-probable shower history?
 - Use all possible shower histories!
- **Robust** to choice of jet algorithm
 - Don’t need algorithm at all (at least with pruning)

\[
\omega^{(\alpha)}_{ij} \equiv \exp \left\{ -\alpha \frac{(d_{ij} - d_{\text{min}})}{d_{\text{min}}} \right\}
\]

\(\alpha=0\) works great!

- W-mass measurement: 0.45 times luminosity required as with classical jets

- Boosted W’s versus QCD jets background
 - **Significance improvement of 2.5** over simple mass window cut
 - Significance improvement of 1.7 over n-subjettiness

- **Lots of potential applications** – we’re just starting to think about them
What else is wrong with the jet-to-parton map?

It treats jets as 4-vectors

• Jets have color, and color connections
 • Used by D0 (published) and ATLAS (Moriond, hopefully)

• Quark and gluon jets may be different
 • **New physics** is quark heavy, backgrounds are gluon heavy
 • Although difficult, quark and gluon discrimination could be extremely useful

• Jets have charge

• Jets from boosted objects have substructure
 • E.g. top-tagging from boosted top jets – used by CMS!

• Boosted Higgs searches
measuring Color flows in jets

Signal

\[H \rightarrow b\bar{b} \]

Background

\[q\bar{q} \rightarrow Zb\bar{b} \]

\[gg \rightarrow Zb\bar{b} \]
How do they show up?

Monte Carlo simulation

- **Color coherence** (angular ordering, e.g. Herwig)
- Color string showers in its rest frame (pt ordering, e.g. Pythia)
 - Boost \rightarrow **string showers** in **string-momentum** direction
How do they show up?

Shower same event millions of times

Higgs:

\[\Delta \eta_{bb} = 1 \]
\[\Delta \phi_{bb} = 2 \]

Add up \(E_T \) in each cell:
Signal vs background

Higgs:

- **Signal (Higgs)**
 - Color singlet

- **Background (QCD)**
 - Color connected to beam

q\bar{q}
Pull

• Find jets (e.g. anti-k_T)
• Construct pull vector (\sim dipole moment) on radiation in jet

$$\vec{p} = \sum_i \frac{E_T^i}{E_T^{jet}} |r_i| \vec{r}_i$$
Can we validate? Yes! on ttbar

b-tag

Measure pull

Clean top tag on leptonic side
Measured by D0

- W+2 jets
 - Not split jet data
 - MC

- Split jets

Noise/pileup area smaller towards other jet!

Cells are assigned to the nearest jet
D0 ruled out color octet W

Andy Haas and Yvonne Peters, hep-ex:1101.0648
Jet Charge

Work in progress with
David Krohn and Tongyan Lin

- **Measured** at LEP for light-quark forward backward asymmetries

\[
\langle Q \rangle = \sum_i p_T^i Q^i
\]

\[Z' \rightarrow \bar{u}u\]

jet p_T-weighted charge, min $p_T = 50$ GeV, Zprime1000_uu.dat
Consistent among flavors

distribution for d-type quarks for different processes

- Zprime1000 ss
- Zprime500 dd
- Zprime1000 dd
- Zprime1000 bb
- Zprime1000 ss
- Zprime500 dd
- Zprime1000 dd
- Zprime1000 bb
- Wprime1000 ud
- Wprime500 udbar
- Wprime200 udbar
W' vs Z' log likelihood

[Graph showing the log likelihood comparison between W' and Z']
Quark versus Gluon jets

Subtle subject
- Monte Carlo event generators may not be trustworthy
- Some data from LEP, but not at the precision that ATLAS and CMS can measure

Two parts
1. Assuming Pythia is correct, how can we distinguish Q from G?

2. How can we validate on data?
 - Where do we find pure samples of quark and gluon jets?
 - Gallichio and MDS JHEP 1110 (2011) 103
How to compare variables?

- Look at distributions of each variable, normalized to equal area

mass/Pt
How to compare variables?

- Look at distributions of each variable, normalized to equal area
- Look at efficiencies as a function of sliding cut
How to compare variables?

This generates the “Receiver Operator Characteristic” (ROC)
We looked at 10,000 variables

The menu, including varying jet size

- Distinguishable particles/tracks/subjets
 - multiplicity, $\langle p_T \rangle$, σ_{p_T}, $\langle k_T \rangle$,
 - charge-weighted p_T sum

- Moments
 - mass, girth, jet broadening
 - angularities
 - optimal kernel
 - 2D: pull, planar flow

- Subjet properties
 - Multiplicity for different algorithms and R_{sub}
 - First subjet’s p_T, 2nd’s p_T, etc.
 - Ratios of subjet p_T’s.
 - k_T splitting scale

Show http://jets.physics.harvard.edu/qvg
We looked at 10,000 variables

Best 2 were

1. Charged particle count
 • Better spatial and energy resolution works better
 • e.g. particles > topoclusters > calorimeter cells > subjets

and

2. Linear radial moment (girth)
 • Similar to jet broadening

Show http://jets.physics.harvard.edu/qvg
Higher p_T means more tracks and more ‘time’ to establish C_A/C_F.
Radial Moment – a measure of the "girth" of the jet.

Weight p_T deposits by distance from jet center

Radial Moment, or Girth:

$$g = \frac{1}{p_T^{jet}} \sum_{i \in jet} p_T^i |r_i|$$
2D distributions show that they are fairly uncorrelated

Quark

Gluon

Likelihood: \[\frac{q}{q+g} \]
Best Variables in Each Category for 200 GeV Jets

- best group of 5
- charged mult & girth
- charged mult * girth
- charged mult $R=0.5$
- subjet mult $R_{sub}=0.1$
- girth $R=0.5$
- optimal kernel
- $1st$ subjet $R=0.5$
- avg k_T of $R_{sub}=0.1$
- mass/Pt $R=0.3$
- decluster $k_T R_{sub}=0.1$
- jet shape $\Psi(0.1)$
- $|\text{pull}| R=0.3$
- planar flow $R=0.3$

Gluon Rejection

$1/30 = 3\%$ gluon

40% quarks
Result

Significance Improvement of \[
\frac{0.4}{\sqrt{1/30}} = 2.19
\]
Conclusions

“These are not your daddy’s jets” -- Steve Ellis

The LHC is so great that we can go well-beyond the jet-to-parton map
- Detectors can measure jet substructure
- Need to look at substructure to find new physics in huge backgrounds

Beyond the jet-to-parton map
- **Qjets**
 - Not mostly likely shower history, but weighted distribution of all shower histories
 - Can improve mass resolution and discovery potential in boosted objects
 - Volatility does better for W-tagging than any other single variable
- Jets have **color**
 - Color representations can be measured: adjoint vs singlet
- **Color connections**
- **Quark** jets and **gluon** jets distinguishable: 40% Q vs 3% G
 - Charge particle count and linear radial moment work best
- Jet substructure
 - many worked out applications over the last few years
Backup Slides
Where are the quark jets?
Look at all samples

- What about cross sections?
- Can cuts purify the samples?
Throw them into a Boosted Decision Tree

Optimize efficiency using BDT classifier with parton momenta as inputs (6 or 9 inputs)

- No Cuts
- Hard cuts on BDT
Now look at the $\gamma + 2$ jets sample

- Look at the best discriminants, ranked by cuts
- The rapidity of the photon and the rapidity of the second hardest jet look good
- But cutting on just η_γ or just η_{J_2} does not help much
Look at correlations

Distribution of $\eta_\gamma \eta_{j1}$

Contours of $\eta_\gamma \eta_{j1}$
Best single variable

BDTs led us to the variable, but with the variable we don’t need BDTs.
What about pure gluons?

b+2 jets or trijets look promising
Throw it at the BDT

Best Samples for Gluon Purity

- Cross Section in pb
- Gluon Purity

- Now try to find a single variable that works as well...
Finding Pure Gluon jets
Summary of finding quarks/gluons

• For quarks, look at gamma + jet
 • cut on \(\eta_\gamma \eta_{j1} + \Delta R_{\gamma j2} \)

• For gluons
 • Look at b+2 jets
 • look at trijets
 • Cut on \(|\eta_{j3}| - |\eta_{j1} - \eta_{j2}| \)
So chance that all 4 jets $\gtrsim 100\, GeV$ are quark $\approx (30\%)^4 \approx 1/125$
Chance EACH Jet is Quark

p_T Cut on All Jets (GeV)
200 GeV Quark Purity

Cross Section in pb

Quark Purity (zoom)
200 GeV Quark Purity

Cross Section in pb

Quark Purity

- 2jet
- 3jet hardest
- γ+2jet harder
- γ+2jet softer
- Z+2jet harder
- γ+1 jet softer
- γ+1 jet harder